IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v148y2021ics096007792100391x.html
   My bibliography  Save this article

Fractional study of Huanglongbing model with singular and non- singular kernel

Author

Listed:
  • Li, Yi Xia
  • Alshehri, Maryam G.
  • Algehyne, Ebrahem A.
  • Ali, Aatif
  • Khan, Muhammad Altaf
  • Muhammad, Taseer
  • Islam, Saeed

Abstract

The disease of citrus is Huanglongbing (HLB), a Chinese name meaning yellow shoot disease and in English-speaking countries referred as a citrus greening threatening the citrus industries worldwide. Citrus greening associated with ’Candidatus Liberibacter asiaticus’ (CLas), is the most devastating disease spread through the infected citrus trees and the major insect vector, the infected citrus psyllid (Diaphorina citri). A fractional-order compartmental model in Caputo and Atangana–Baleanu sense is consider to study the dynamical aspects of HLB among citrus trees and Asian citrus psyllid (ACP). We computed a basic reproduction number and present a detailed theoretical analysis including solution positivity and the stability of disease-free equilibrium of the Caputo fractional model. Numerical simulations are conducted for both Caputo and Atangana–Baleanu operators. The numerical results of Caputo model suggest that the infection and removal rate impacts impressively on the severity of the HLB. Moreover, for different values of the fractional derivative suggest the infection minimization and possibly the control for the disease. While simulating the model using both the operators, the results captured are are better and may be useful in further research of the proposed model. We conclude that, the Atangana–Baleanu operator is more effective and prominent biologically as compared to the Caputo derivative for the proposed problem.

Suggested Citation

  • Li, Yi Xia & Alshehri, Maryam G. & Algehyne, Ebrahem A. & Ali, Aatif & Khan, Muhammad Altaf & Muhammad, Taseer & Islam, Saeed, 2021. "Fractional study of Huanglongbing model with singular and non- singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:chsofr:v:148:y:2021:i:c:s096007792100391x
    DOI: 10.1016/j.chaos.2021.111037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792100391X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2021.111037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dubey, Ved Prakash & Dubey, Sarvesh & Kumar, Devendra & Singh, Jagdev, 2021. "A computational study of fractional model of atmospheric dynamics of carbon dioxide gas," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Hasan, Shatha & El-Ajou, Ahmad & Hadid, Samir & Al-Smadi, Mohammed & Momani, Shaher, 2020. "Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    3. Atangana, Abdon & Koca, Ilknur, 2016. "Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 447-454.
    4. Ahmed, E. & Elgazzar, A.S., 2007. "On fractional order differential equations model for nonlocal epidemics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 379(2), pages 607-614.
    5. Gao, Shujing & Yu, Dan & Meng, Xinzhu & Zhang, Fumin, 2018. "Global dynamics of a stage-structured Huanglongbing model with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 117(C), pages 60-67.
    6. Shujing Gao & Lei Luo & Shuixian Yan & Xinzhu Meng, 2018. "Dynamical Behavior of a Novel Impulsive Switching Model for HLB with Seasonal Fluctuations," Complexity, Hindawi, vol. 2018, pages 1-11, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Changjin & Alhejaili, Weaam & Saifullah, Sayed & Khan, Arshad & Khan, Javed & El-Shorbagy, M.A., 2022. "Analysis of Huanglongbing disease model with a novel fractional piecewise approach," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-khedhairi, A. & Matouk, A.E. & Khan, I., 2019. "Chaotic dynamics and chaos control for the fractional-order geomagnetic field model," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 390-401.
    2. Miao Ouyang & Yongping Zhang, 2019. "Julia Sets and Their Control of Discrete Fractional SIRS Models," Complexity, Hindawi, vol. 2019, pages 1-10, June.
    3. Akgül, Esra Karatas & Akgül, Ali & Yavuz, Mehmet, 2021. "New Illustrative Applications of Integral Transforms to Financial Models with Different Fractional Derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    4. Jahanshahi, S. & Babolian, E. & Torres, D.F.M. & Vahidi, A.R., 2017. "A fractional Gauss–Jacobi quadrature rule for approximating fractional integrals and derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 295-304.
    5. Pratap, A. & Raja, R. & Cao, J. & Lim, C.P. & Bagdasar, O., 2019. "Stability and pinning synchronization analysis of fractional order delayed Cohen–Grossberg neural networks with discontinuous activations," Applied Mathematics and Computation, Elsevier, vol. 359(C), pages 241-260.
    6. El-Dessoky Ahmed, M.M. & Altaf Khan, Muhammad, 2020. "Modeling and analysis of the polluted lakes system with various fractional approaches," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    7. Agarwal, Praveen & Singh, Ram & Rehman, Attiq ul, 2021. "Numerical solution of hybrid mathematical model of dengue transmission with relapse and memory via Adam–Bashforth–Moulton predictor-corrector scheme," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    8. Koca, Ilknur, 2018. "Efficient numerical approach for solving fractional partial differential equations with non-singular kernel derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 278-286.
    9. Debbouche, Amar & Antonov, Valery, 2017. "Approximate controllability of semilinear Hilfer fractional differential inclusions with impulsive control inclusion conditions in Banach spaces," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 140-148.
    10. Owolabi, Kolade M. & Atangana, Abdon, 2017. "Numerical approximation of nonlinear fractional parabolic differential equations with Caputo–Fabrizio derivative in Riemann–Liouville sense," Chaos, Solitons & Fractals, Elsevier, vol. 99(C), pages 171-179.
    11. Hammad, Hasanen A. & Alshehri, Maryam G., 2024. "Application of the Mittag-Leffler kernel in stochastic differential systems for approximating the controllability of nonlocal fractional derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    12. Dineshkumar, C. & Udhayakumar, R. & Vijayakumar, V. & Nisar, Kottakkaran Sooppy & Shukla, Anurag, 2022. "A note concerning to approximate controllability of Atangana-Baleanu fractional neutral stochastic systems with infinite delay," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    13. Samaneh Soradi Zeid & Mostafa Yousefi, 2016. "A Neural Network Approach for Solving Fractional-Order Model of HIV Infection of CD4+T-Cells," International Journal of Sciences, Office ijSciences, vol. 5(06), pages 65-69, June.
    14. Sheikh, Nadeem Ahmad & Ali, Farhad & Khan, Ilyas & Gohar, Madeha, 2018. "A theoretical study on the performance of a solar collector using CeO2 and Al2O3 water based nanofluids with inclined plate: Atangana–Baleanu fractional model," Chaos, Solitons & Fractals, Elsevier, vol. 115(C), pages 135-142.
    15. Aimene, D. & Baleanu, D. & Seba, D., 2019. "Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with delay," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 51-57.
    16. Chai, Yi & Chen, Liping & Wu, Ranchao & Sun, Jian, 2012. "Adaptive pinning synchronization in fractional-order complex dynamical networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5746-5758.
    17. Hashemi, M.S. & Atangana, A. & Hajikhah, S., 2020. "Solving fractional pantograph delay equations by an effective computational method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 295-305.
    18. Jiang, Jingfei & Chen, Huatao & Guirao, Juan L.G. & Cao, Dengqing, 2019. "Existence of the solution and stability for a class of variable fractional order differential systems," Chaos, Solitons & Fractals, Elsevier, vol. 128(C), pages 269-274.
    19. Gafiychuk, V. & Datsko, B. & Meleshko, V., 2008. "Analysis of fractional order Bonhoeffer–van der Pol oscillator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(2), pages 418-424.
    20. Peng, Li & Zhou, Yong & Debbouche, Amar, 2019. "Approximation techniques of optimal control problems for fractional dynamic systems in separable Hilbert spaces," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 234-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:148:y:2021:i:c:s096007792100391x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.