IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v182y2021icp66-85.html
   My bibliography  Save this article

Numerical algorithm to Caputo type time–space fractional partial differential equations with variable coefficients

Author

Listed:
  • Kheybari, Samad

Abstract

This article assigns to a new numerical algorithm as an appropriate tool that deals with the time–space fractional partial differential equations in Caputo sense with variable coefficients. In the current algorithm, firstly, we presume that the approximate solution of the main problem is expandable along space variable via shifted Chebyshev polynomials with time-dependent coefficients. In the second step, we employ operational matrices of space-fractional derivatives to transform (reduce) the expanded problem to a system of time-fractional ordinary differential equations (FODEs) with initial value conditions. Indeed, the solutions of this system are required to obtain the time-dependent coefficients of the mentioned expansion. To solve this system, we define some independent secondary initial value problems and solve them analytically. At the final step, we find an optimal linear combination of this particular solutions to obtain an approximate solution of the main problem such that the residual error function forced to vanish in an average sense over the desired region, and the approximate solution satisfies in initial/boundary conditions of the main problem. The convergence property of the presented algorithm is demonstrated by the residual error analysis. The reliability and accuracy of the new algorithm are confirmed by solving some illustrative test problems. In order to perform a premier analysis with more details for the convergence property of the new algorithm, we compute the observed convergence order indicators in each test problem. Moreover, we evaluate our computed results with other numerical schemes in the literature to emphasize the promising performance of the proposed algorithm.

Suggested Citation

  • Kheybari, Samad, 2021. "Numerical algorithm to Caputo type time–space fractional partial differential equations with variable coefficients," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 182(C), pages 66-85.
  • Handle: RePEc:eee:matcom:v:182:y:2021:i:c:p:66-85
    DOI: 10.1016/j.matcom.2020.10.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475420303682
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.matcom.2020.10.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hashemi, M.S., 2018. "Invariant subspaces admitted by fractional differential equations with conformable derivatives," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 161-169.
    2. Kheybari, S. & Darvishi, M.T., 2018. "An efficient technique to find semi-analytical solutions for higher order multi-point boundary value problems," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 76-93.
    3. Aylin Bayrak, Mine & Demir, Ali, 2018. "A new approach for space-time fractional partial differential equations by residual power series method," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 215-230.
    4. Kheybari, Samad & Darvishi, Mohammad Taghi & Hashemi, Mir Sajjad, 2019. "Numerical simulation for the space-fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 57-69.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inga Timofejeva & Zenonas Navickas & Tadas Telksnys & Romas Marcinkevicius & Minvydas Ragulskis, 2021. "An Operator-Based Scheme for the Numerical Integration of FDEs," Mathematics, MDPI, vol. 9(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hashemi, M.S., 2021. "A novel approach to find exact solutions of fractional evolution equations with non-singular kernel derivative," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Hassan Eltayeb & Said Mesloub & Yahya T. Abdalla & Adem Kılıçman, 2019. "A Note on Double Conformable Laplace Transform Method and Singular One Dimensional Conformable Pseudohyperbolic Equations," Mathematics, MDPI, vol. 7(10), pages 1-21, October.
    3. Darvishi, M.T. & Najafi, Mohammad & Wazwaz, Abdul-Majid, 2021. "Conformable space-time fractional nonlinear (1+1)-dimensional Schrödinger-type models and their traveling wave solutions," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    4. Chaudhary, Manish & Kumar, Rohit & Singh, Mritunjay Kumar, 2020. "Fractional convection-dispersion equation with conformable derivative approach," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    5. Kheybari, Samad & Darvishi, Mohammad Taghi & Hashemi, Mir Sajjad, 2019. "Numerical simulation for the space-fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 57-69.
    6. Kaya, Guven & Kartal, Senol & Gurcan, Fuat, 2020. "Dynamical analysis of a discrete conformable fractional order bacteria population model in a microcosm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    7. Muhammad Imran Liaqat & Ali Akgül & Hanaa Abu-Zinadah, 2023. "Analytical Investigation of Some Time-Fractional Black–Scholes Models by the Aboodh Residual Power Series Method," Mathematics, MDPI, vol. 11(2), pages 1-19, January.
    8. Hashemi, M.S. & Atangana, A. & Hajikhah, S., 2020. "Solving fractional pantograph delay equations by an effective computational method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 295-305.
    9. Ashpazzadeh, Elmira & Chu, Yu-Ming & Hashemi, Mir Sajjad & Moharrami, Mahsa & Inc, Mustafa, 2022. "Hermite multiwavelets representation for the sparse solution of nonlinear Abel’s integral equation," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    10. Martynyuk, Anatoliy A. & Stamov, Gani Tr. & Stamova, Ivanka M., 2020. "Fractional-like Hukuhara derivatives in the theory of set-valued differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 131(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:182:y:2021:i:c:p:66-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.