IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i3p340-d1573091.html
   My bibliography  Save this article

An Improved Whale Optimization Algorithm for the Integrated Scheduling of Automated Guided Vehicles and Yard Cranes

Author

Listed:
  • Shuaishuai Gong

    (School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Ping Lou

    (School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Jianmin Hu

    (School of Information Engineering, Hubei University of Economics, Wuhan 430205, China)

  • Yuhang Zeng

    (School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China)

  • Chuannian Fan

    (School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China)

Abstract

With the rapid development of global trade, the cargo throughput of automated container terminals (ACTs) has increased significantly. To meet the demands of large-scale, high-intensity, and high-efficiency ACT operations, the seamless integration of various terminal facilities has become crucial, particularly the collaboration between yard cranes (YCs) and automated guided vehicles (AGVs). Therefore, an integrated scheduling problem for YCs and AGVs (YAAISP) is proposed and formulated in this paper, considering stacking containers and bidirectional transport of AGVs. As the YAAISP is an NP-hard problem, an Improved Whale Optimization Algorithm (IWOA) is proposed in which a reverse learning strategy is used for the population to enhance population diversity; a random difference variation strategy is employed to improve individual exploration capabilities; and a nonlinear convergence factor alongside an adaptive weighting mechanism to dynamically balance global exploration and local exploitation. For container tasks of size 100, the objective function value (OFV) of the IWOA was reduced by 9.25% compared to the standard Whale Optimization Algorithm. Comparisons with other algorithms, such as the Genetic Algorithm, Particle Swarm Optimization, and Grey Wolf Optimizer, showed an OFV reduction of 9.61% to 11.75%. This validates the superiority of the proposed method.

Suggested Citation

  • Shuaishuai Gong & Ping Lou & Jianmin Hu & Yuhang Zeng & Chuannian Fan, 2025. "An Improved Whale Optimization Algorithm for the Integrated Scheduling of Automated Guided Vehicles and Yard Cranes," Mathematics, MDPI, vol. 13(3), pages 1-23, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:340-:d:1573091
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/3/340/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/3/340/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:340-:d:1573091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.