IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v46y2010i3p354-366.html
   My bibliography  Save this article

An uncertainty-aware AGV assignment algorithm for automated container terminals

Author

Listed:
  • Angeloudis, Panagiotis
  • Bell, Michael G.H.

Abstract

This paper studies job assignments for automated guided in container terminal settings under various conditions of uncertainty. An introduction to their operation is provided, along with a flexible dispatching algorithm, suitable for real-time control of AGVs. Using these concepts a new AGV dispatching approach is developed, capable of operating under uncertain conditions within a detailed container terminal model. Several performance indicators are presented, focused on generic features of vehicle operations as well the assessment of uncertainty levels inside the terminal. From the results of the simulation experiments, it is found that the proposed technique outperforms well known heuristics and alternative algorithms.

Suggested Citation

  • Angeloudis, Panagiotis & Bell, Michael G.H., 2010. "An uncertainty-aware AGV assignment algorithm for automated container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 354-366, May.
  • Handle: RePEc:eee:transe:v:46:y:2010:i:3:p:354-366
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554509001215
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping Lou & Yutong Zhong & Jiwei Hu & Chuannian Fan & Xiao Chen, 2023. "Digital-Twin-Driven AGV Scheduling and Routing in Automated Container Terminals," Mathematics, MDPI, vol. 11(12), pages 1-25, June.
    2. Zhongbin Zhao & Xifu Wang & Suxin Cheng & Wei Liu & Lijun Jiang, 2022. "A New Synchronous Handling Technology of Double Stack Container Trains in Sea-Rail Intermodal Terminals," Sustainability, MDPI, vol. 14(18), pages 1-18, September.
    3. Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Transport operations in container terminals: Literature overview, trends, research directions and classification scheme," European Journal of Operational Research, Elsevier, vol. 236(1), pages 1-13.
    4. Hang Yu & Yiyun Deng & Leijie Zhang & Xin Xiao & Caimao Tan, 2022. "Yard Operations and Management in Automated Container Terminals: A Review," Sustainability, MDPI, vol. 14(6), pages 1-24, March.
    5. Marie-Laure Espinouse & Grzegorz Pawlak & Malgorzata Sterna, 2017. "Complexity of Scheduling Problem in Single-Machine Flexible Manufacturing System with Cyclic Transportation and Unlimited Buffers," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 1042-1054, June.
    6. Luo, Jiabin & Wu, Yue, 2015. "Modelling of dual-cycle strategy for container storage and vehicle scheduling problems at automated container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 49-64.
    7. Wei, Xiaoyang & Jia, Shuai & Meng, Qiang & Tan, Kok Choon, 2020. "Tugboat scheduling for container ports," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    8. Kress, Dominik & Meiswinkel, Sebastian & Pesch, Erwin, 2019. "Straddle carrier routing at seaport container terminals in the presence of short term quay crane buffer areas," European Journal of Operational Research, Elsevier, vol. 279(3), pages 732-750.
    9. Li, Kevin X. & Li, Mengchi & Zhu, Yuhan & Yuen, Kum Fai & Tong, Hao & Zhou, Haoqing, 2023. "Smart port: A bibliometric review and future research directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    10. Chen, Wanying (Amanda) & De Koster, René B.M. & Gong, Yeming, 2021. "Performance evaluation of automated medicine delivery systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    11. Vitalii Naumov & Daniel Kubek & Paweł Więcek & Iwona Skalna & Jerzy Duda & Robert Goncerz & Tomasz Derlecki, 2021. "Optimizing Energy Consumption in Internal Transportation Using Dynamic Transportation Vehicles Assignment Model: Case Study in Printing Company," Energies, MDPI, vol. 14(15), pages 1-22, July.
    12. Xiyan Zheng & Chengji Liang & Yu Wang & Jian Shi & Gino Lim, 2022. "Multi-AGV Dynamic Scheduling in an Automated Container Terminal: A Deep Reinforcement Learning Approach," Mathematics, MDPI, vol. 10(23), pages 1-19, December.
    13. Li, Linman & Li, Yuqing & Liu, Ran & Zhou, Yaoming & Pan, Ershun, 2023. "A Two-stage Stochastic Programming for AGV scheduling with random tasks and battery swapping in automated container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:46:y:2010:i:3:p:354-366. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.