IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v235y2014i2p412-430.html
   My bibliography  Save this article

Storage yard operations in container terminals: Literature overview, trends, and research directions

Author

Listed:
  • Carlo, Héctor J.
  • Vis, Iris F.A.
  • Roodbergen, Kees Jan

Abstract

Inbound and outbound containers are temporarily stored in the storage yard at container terminals. A combination of container demand increase and storage yard capacity scarcity create complex operational challenges for storage yard managers. This paper presents an in-depth overview of storage yard operations, including the material handling equipment used, and highlights current industry trends and developments. A classification scheme for storage yard operations is proposed and used to classify scientific journal papers published between 2004 and 2012. The paper also discusses and challenges the current operational paradigms on storage yard operations. Lastly, the paper identifies new avenues for academic research based on current trends and developments in the container terminal industry.

Suggested Citation

  • Carlo, Héctor J. & Vis, Iris F.A. & Roodbergen, Kees Jan, 2014. "Storage yard operations in container terminals: Literature overview, trends, and research directions," European Journal of Operational Research, Elsevier, vol. 235(2), pages 412-430.
  • Handle: RePEc:eee:ejores:v:235:y:2014:i:2:p:412-430
    DOI: 10.1016/j.ejor.2013.10.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221713008771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.10.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Zhi & Lee, Der-Horng & Meng, Qiang, 2008. "Deployment strategies of double-rail-mounted gantry crane systems for loading outbound containers in container terminals," International Journal of Production Economics, Elsevier, vol. 115(1), pages 221-228, September.
    2. Iris F. A. Vis & Kees Jan Roodbergen, 2009. "Scheduling of Container Storage and Retrieval," Operations Research, INFORMS, vol. 57(2), pages 456-467, April.
    3. Lim, Andrew & Xu, Zhou, 2006. "A critical-shaking neighborhood search for the yard allocation problem," European Journal of Operational Research, Elsevier, vol. 174(2), pages 1247-1259, October.
    4. He, Junliang & Chang, Daofang & Mi, Weijian & Yan, Wei, 2010. "A hybrid parallel genetic algorithm for yard crane scheduling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 136-155, January.
    5. Nang Laik & Eleni Hadjiconstantnou, 2008. "Container Assignment and Yard Crane Deployment in a Container Terminal: A Case Study," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 10(1-2), pages 90-107, March.
    6. Ng, W. C., 2005. "Crane scheduling in container yards with inter-crane interference," European Journal of Operational Research, Elsevier, vol. 164(1), pages 64-78, July.
    7. Park, Taejin & Choe, Ri & Hun Kim, Young & Ryel Ryu, Kwang, 2011. "Dynamic adjustment of container stacking policy in an automated container terminal," International Journal of Production Economics, Elsevier, vol. 133(1), pages 385-392, September.
    8. de Koster, Rene & Le-Duc, Tho & Roodbergen, Kees Jan, 2007. "Design and control of warehouse order picking: A literature review," European Journal of Operational Research, Elsevier, vol. 182(2), pages 481-501, October.
    9. Cordeau, Jean-Francois & Gaudioso, Manlio & Laporte, Gilbert & Moccia, Luigi, 2007. "The service allocation problem at the Gioia Tauro Maritime Terminal," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1167-1184, January.
    10. Bortfeldt, Andreas & Forster, Florian, 2012. "A tree search procedure for the container pre-marshalling problem," European Journal of Operational Research, Elsevier, vol. 217(3), pages 531-540.
    11. Omor Sharif & Nathan Huynh, 2012. "Yard crane scheduling at container terminals: A comparative study of centralized and decentralized approaches," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 14(2), pages 139-161, June.
    12. Zhao, Wenjuan & Goodchild, Anne V., 2010. "The impact of truck arrival information on container terminal rehandling," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(3), pages 327-343, May.
    13. Nishimura, Etsuko & Imai, Akio & Janssens, Gerrit K. & Papadimitriou, Stratos, 2009. "Container storage and transshipment marine terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(5), pages 771-786, September.
    14. Li, Wenkai & Goh, Mark & Wu, Yong & Petering, M.E.H. & de Souza, R. & Wu, Y.C., 2012. "A continuous time model for multiple yard crane scheduling with last minute job arrivals," International Journal of Production Economics, Elsevier, vol. 136(2), pages 332-343.
    15. Iris F. A. Vis & Hector J. Carlo, 2010. "Sequencing Two Cooperating Automated Stacking Cranes in a Container Terminal," Transportation Science, INFORMS, vol. 44(2), pages 169-182, May.
    16. Woo, Youn Ju & Kim, Kap Hwan, 2011. "Estimating the space requirement for outbound container inventories in port container terminals," International Journal of Production Economics, Elsevier, vol. 133(1), pages 293-301, September.
    17. Lee, Der-Horng & Cao, Jin Xin & Shi, Qixin & Chen, Jiang Hang, 2009. "A heuristic algorithm for yard truck scheduling and storage allocation problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(5), pages 810-820, September.
    18. Z Fu & Y Li & A Lim & B Rodrigues, 2007. "Port space allocation with a time dimension," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(6), pages 797-807, June.
    19. Lee, Byung Kwon & Kim, Kap Hwan, 2010. "Optimizing the block size in container yards," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(1), pages 120-135, January.
    20. Lee, Der-Horng & Jin, Jian Gang & Chen, Jiang Hang, 2012. "Terminal and yard allocation problem for a container transshipment hub with multiple terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 516-528.
    21. Xi Guo & Shell Ying Huang, 2012. "Dynamic Space and Time Partitioning for Yard Crane Workload Management in Container Terminals," Transportation Science, INFORMS, vol. 46(1), pages 134-148, February.
    22. Lee, Der-Horng & Cao, Zhi & Meng, Qiang, 2007. "Scheduling of two-transtainer systems for loading outbound containers in port container terminals with simulated annealing algorithm," International Journal of Production Economics, Elsevier, vol. 107(1), pages 115-124, May.
    23. Chen, Lu & Lu, Zhiqiang, 2012. "The storage location assignment problem for outbound containers in a maritime terminal," International Journal of Production Economics, Elsevier, vol. 135(1), pages 73-80.
    24. Jiang, Xinjia & Lee, Loo Hay & Chew, Ek Peng & Han, Yongbin & Tan, Kok Choon, 2012. "A container yard storage strategy for improving land utilization and operation efficiency in a transshipment hub port," European Journal of Operational Research, Elsevier, vol. 221(1), pages 64-73.
    25. Lee, Yusin & Chao, Shih-Liang, 2009. "A neighborhood search heuristic for pre-marshalling export containers," European Journal of Operational Research, Elsevier, vol. 196(2), pages 468-475, July.
    26. Young Kim, Ki & Hwan Kim, Kap, 1999. "A routing algorithm for a single straddle carrier to load export containers onto a containership," International Journal of Production Economics, Elsevier, vol. 59(1-3), pages 425-433, March.
    27. Petering, Matthew E.H., 2009. "Effect of block width and storage yard layout on marine container terminal performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(4), pages 591-610, July.
    28. Vis, Iris F. A. & de Koster, Rene, 2003. "Transshipment of containers at a container terminal: An overview," European Journal of Operational Research, Elsevier, vol. 147(1), pages 1-16, May.
    29. Weihua Zhou & Xiaobo Wu, 2009. "An Efficient Optimal Solution Of A Two-Crane Scheduling Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 26(01), pages 31-58.
    30. Vis, Iris F.A., 2006. "A comparative analysis of storage and retrieval equipment at a container terminal," International Journal of Production Economics, Elsevier, vol. 103(2), pages 680-693, October.
    31. B Casey & E Kozan, 2012. "Optimising container storage processes at multimodal terminals," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(8), pages 1126-1142, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    2. Damla Kizilay & Deniz Türsel Eliiyi, 2021. "A comprehensive review of quay crane scheduling, yard operations and integrations thereof in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 33(1), pages 1-42, March.
    3. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
    4. Gharehgozli, Amir & Yu, Yugang & de Koster, René & Du, Shaofu, 2019. "Sequencing storage and retrieval requests in a container block with multiple open locations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 261-284.
    5. Yong Wu & Wenkai Li & Matthew E. H. Petering & Mark Goh & Robert de Souza, 2015. "Scheduling Multiple Yard Cranes with Crane Interference and Safety Distance Requirement," Transportation Science, INFORMS, vol. 49(4), pages 990-1005, November.
    6. Jenny Nossack & Dirk Briskorn & Erwin Pesch, 2018. "Container Dispatching and Conflict-Free Yard Crane Routing in an Automated Container Terminal," Transportation Science, INFORMS, vol. 52(5), pages 1059-1076, October.
    7. Amir Gharehgozli & Nima Zaerpour & Rene Koster, 2020. "Container terminal layout design: transition and future," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 22(4), pages 610-639, December.
    8. Shell Ying Huang & Ya Li, 2017. "Yard crane scheduling to minimize total weighted vessel loading time in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 689-720, December.
    9. Amir Hossein Gharehgozli & Gilbert Laporte & Yugang Yu & René de Koster, 2015. "Scheduling Twin Yard Cranes in a Container Block," Transportation Science, INFORMS, vol. 49(3), pages 686-705, August.
    10. Chen, Xiaojing & Li, Feng & Jia, Bin & Wu, Jianjun & Gao, Ziyou & Liu, Ronghui, 2021. "Optimizing storage location assignment in an automotive Ro-Ro terminal," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 249-281.
    11. Sumin Chen & Qingcheng Zeng & Yushan Hu, 2022. "Scheduling optimization for two crossover automated stacking cranes considering relocation," Operational Research, Springer, vol. 22(3), pages 2099-2120, July.
    12. Li, Wenkai & Goh, Mark & Wu, Yong & Petering, M.E.H. & de Souza, R. & Wu, Y.C., 2012. "A continuous time model for multiple yard crane scheduling with last minute job arrivals," International Journal of Production Economics, Elsevier, vol. 136(2), pages 332-343.
    13. Matthew E. H. Petering & Yong Wu & Wenkai Li & Mark Goh & Robert Souza & Katta G. Murty, 2017. "Real-time container storage location assignment at a seaport container transshipment terminal: dispersion levels, yard templates, and sensitivity analyses," Flexible Services and Manufacturing Journal, Springer, vol. 29(3), pages 369-402, December.
    14. Boysen, Nils & Briskorn, Dirk & Meisel, Frank, 2017. "A generalized classification scheme for crane scheduling with interference," European Journal of Operational Research, Elsevier, vol. 258(1), pages 343-357.
    15. Roberto Guerra-Olivares & Neale R. Smith & Rosa G. González-Ramírez & Leopoldo Eduardo Cárdenas-Barrón, 2018. "A study of the sensitivity of sequence stacking strategies for the storage location assignment problem for out-bound containers in a maritime terminal," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(5), pages 1057-1062, October.
    16. Branislav Dragović & Ernestos Tzannatos & Nam Kuy Park, 2017. "Simulation modelling in ports and container terminals: literature overview and analysis by research field, application area and tool," Flexible Services and Manufacturing Journal, Springer, vol. 29(1), pages 4-34, March.
    17. Jiang, Xin Jia & Jin, Jian Gang, 2017. "A branch-and-price method for integrated yard crane deployment and container allocation in transshipment yards," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 62-75.
    18. Liu, Wenqian & Zhu, Xiaoning & Wang, Li & Li, Siyu, 2024. "Flexible yard crane scheduling for mixed railway and road container operations in sea-rail intermodal ports with the sharing storage yard," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 190(C).
    19. Liu, Changchun, 2020. "Iterative heuristic for simultaneous allocations of berths, quay cranes, and yards under practical situations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    20. Lehnfeld, Jana & Knust, Sigrid, 2014. "Loading, unloading and premarshalling of stacks in storage areas: Survey and classification," European Journal of Operational Research, Elsevier, vol. 239(2), pages 297-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:235:y:2014:i:2:p:412-430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.