IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v115y2013icp1-15.html
   My bibliography  Save this article

Archimedean survival processes

Author

Listed:
  • Hoyle, Edward
  • Mengütürk, Levent Ali

Abstract

Archimedean copulas are popular in the world of multivariate modelling as a result of their breadth, tractability, and flexibility. McNeil and Nešlehová (2009) [12] showed that the class of Archimedean copulas coincides with the class of positive multivariate ℓ1-norm symmetric distributions. Building upon their results, we introduce a class of multivariate Markov processes that we call ‘Archimedean survival processes’ (ASPs). An ASP is defined over a finite time interval, is equivalent in law to a vector of independent gamma processes, and its terminal value has an Archimedean survival copula. There exists a bijection from the class of ASPs to the class of Archimedean copulas. We provide various characterisations of ASPs, and a generalisation.

Suggested Citation

  • Hoyle, Edward & Mengütürk, Levent Ali, 2013. "Archimedean survival processes," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 1-15.
  • Handle: RePEc:eee:jmvana:v:115:y:2013:i:c:p:1-15
    DOI: 10.1016/j.jmva.2012.09.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X12002229
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2012.09.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    2. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    3. Hoyle, Edward & Hughston, Lane P. & Macrina, Andrea, 2011. "Lévy random bridges and the modelling of financial information," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 856-884, April.
    4. Norberg, Ragnar, 1999. "Prediction of Outstanding Liabilities II. Model Variations and Extensions," ASTIN Bulletin, Cambridge University Press, vol. 29(1), pages 5-25, May.
    5. McNeil, Alexander J. & Neslehová, Johanna, 2010. "From Archimedean to Liouville copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(8), pages 1772-1790, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward Hoyle & Levent Ali Menguturk, 2020. "Generalised Liouville Processes and their Properties," Papers 2003.11312, arXiv.org, revised May 2020.
    2. Mohamed Erraoui & Astrid Hilbert & Mohammed Louriki, 2020. "Bridges with Random Length: Gamma Case," Journal of Theoretical Probability, Springer, vol. 33(2), pages 931-953, June.
    3. Mengütürk, Levent Ali, 2018. "Gaussian random bridges and a geometric model for information equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 465-483.
    4. Levent Ali Mengütürk, 2023. "From Irrevocably Modulated Filtrations to Dynamical Equations Over Random Networks," Journal of Theoretical Probability, Springer, vol. 36(2), pages 845-875, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Włodzimierz Wysocki, 2015. "Kendall's tau and Spearman's rho for n -dimensional Archimedean copulas and their asymptotic properties," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(4), pages 442-459, December.
    2. Christian Genest & Johanna Nešlehová & Jean-François Quessy, 2012. "Tests of symmetry for bivariate copulas," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(4), pages 811-834, August.
    3. Christian Genest & Johanna Nešlehová & Johanna Ziegel, 2011. "Inference in multivariate Archimedean copula models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 223-256, August.
    4. Zheng Wei & Seongyong Kim & Boseung Choi & Daeyoung Kim, 2019. "Multivariate Skew Normal Copula for Asymmetric Dependence: Estimation and Application," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 365-387, January.
    5. Edward Hoyle & Levent Ali Menguturk, 2011. "Archimedean Survival Processes," Papers 1106.2342, arXiv.org, revised Sep 2012.
    6. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
    7. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    8. Fabrizio Durante & Erich Klement & Carlo Sempi & Manuel Úbeda-Flores, 2010. "Measures of non-exchangeability for bivariate random vectors," Statistical Papers, Springer, vol. 51(3), pages 687-699, September.
    9. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    10. Toshiaki Ogawa & Masato Ubukata & Toshiaki Watanabe, 2020. "Stock Return Predictability and Variance Risk Premia around the ZLB," IMES Discussion Paper Series 20-E-09, Institute for Monetary and Economic Studies, Bank of Japan.
    11. Chuong Luong & Nikolai Dokuchaev, 2016. "Modeling Dependency Of Volatility On Sampling Frequency Via Delay Equations," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 1-21, June.
    12. Turan G. Bali & Robert F. Engle & Yi Tang, 2017. "Dynamic Conditional Beta Is Alive and Well in the Cross Section of Daily Stock Returns," Management Science, INFORMS, vol. 63(11), pages 3760-3779, November.
    13. Chen, Qihao & Huang, Zhuo & Liang, Fang, 2023. "Measuring systemic risk with high-frequency data: A realized GARCH approach," Finance Research Letters, Elsevier, vol. 54(C).
    14. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    15. Erie Febrian & Aldrin Herwany, 2009. "Volatility Forecasting Models and Market Co-Integration: A Study on South-East Asian Markets," Working Papers in Economics and Development Studies (WoPEDS) 200911, Department of Economics, Padjadjaran University, revised Sep 2009.
    16. Gustavo Peralta, 2016. "The Nature of Volatility Spillovers across the International Capital Markets," CNMV Working Papers CNMV Working Papers no. 6, CNMV- Spanish Securities Markets Commission - Research and Statistics Department.
    17. Boucher, Christophe & Maillet, Bertrand & Michel, Thierry, 2008. "Do misalignments predict aggregated stock-market volatility?," Economics Letters, Elsevier, vol. 100(2), pages 317-320, August.
    18. Jevtić, P. & Hurd, T.R., 2017. "The joint mortality of couples in continuous time," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 90-97.
    19. Lee, Hwang Hee & Hyun, Jung-Soon, 2019. "The asymmetric effect of equity volatility on credit default swap spreads," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 125-136.
    20. Torben G. Andersen & Tim Bollerslev & Peter Christoffersen & Francis X. Diebold, 2007. "Practical Volatility and Correlation Modeling for Financial Market Risk Management," NBER Chapters, in: The Risks of Financial Institutions, pages 513-544, National Bureau of Economic Research, Inc.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:115:y:2013:i:c:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.