IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v18y2024i2d10.1007_s11634-022-00497-4.html
   My bibliography  Save this article

On discriminating between lognormal and Pareto tail: an unsupervised mixture-based approach

Author

Listed:
  • Marco Bee

    (University of Trento)

Abstract

Many stochastic models in economics and finance are described by distributions with a lognormal body. Testing for a possible Pareto tail and estimating the parameters of the Pareto distribution in these models is an important topic. Although the problem has been extensively studied in the literature, most applications are characterized by some weaknesses. We propose a method that exploits all the available information by taking into account the data generating process of the whole population. After estimating a lognormal–Pareto mixture with a known threshold via the EM algorithm, we exploit this result to develop an unsupervised tail estimation approach based on the maximization of the profile likelihood function. Monte Carlo experiments and two empirical applications to the size of US metropolitan areas and of firms in an Italian district confirm that the proposed method works well and outperforms two commonly used techniques. Simulation results are available in an online supplementary appendix.

Suggested Citation

  • Marco Bee, 2024. "On discriminating between lognormal and Pareto tail: an unsupervised mixture-based approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 18(2), pages 251-269, June.
  • Handle: RePEc:spr:advdac:v:18:y:2024:i:2:d:10.1007_s11634-022-00497-4
    DOI: 10.1007/s11634-022-00497-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-022-00497-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-022-00497-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Majda Benzidia & Michel Lubrano, 2020. "A Bayesian look at American academic wages: From wage dispersion to wage compression," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 18(2), pages 213-238, June.
    2. David Scollnik, 2007. "On composite lognormal-Pareto models," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2007(1), pages 20-33.
    3. di Giovanni, Julian & Levchenko, Andrei A. & Rancière, Romain, 2011. "Power laws in firm size and openness to trade: Measurement and implications," Journal of International Economics, Elsevier, vol. 85(1), pages 42-52, September.
    4. Jan Eeckhout, 2004. "Gibrat's Law for (All) Cities," American Economic Review, American Economic Association, vol. 94(5), pages 1429-1451, December.
    5. Hernán D. Rozenfeld & Diego Rybski & Xavier Gabaix & Hernán A. Makse, 2011. "The Area and Population of Cities: New Insights from a Different Perspective on Cities," American Economic Review, American Economic Association, vol. 101(5), pages 2205-2225, August.
    6. Bee, Marco & Riccaboni, Massimo & Schiavo, Stefano, 2017. "Where Gibrat meets Zipf: Scale and scope of French firms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 265-275.
    7. Xavier Gabaix, 2009. "Power Laws in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 1(1), pages 255-294, May.
    8. Rafael González-Val & Arturo Ramos & Fernando Sanz-Gracia & María Vera-Cabello, 2015. "Size distributions for all cities: Which one is best?," Papers in Regional Science, Wiley Blackwell, vol. 94(1), pages 177-196, March.
    9. Jan Eeckhout, 2009. "Gibrat's Law for (All) Cities: Reply," American Economic Review, American Economic Association, vol. 99(4), pages 1676-1683, September.
    10. Gabaix, Xavier & Ibragimov, Rustam, 2011. "Rank − 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 24-39.
    11. Giorgio Fazio & Marco Modica, 2015. "Pareto Or Log-Normal? Best Fit And Truncation In The Distribution Of All Cities," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 736-756, November.
    12. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Abu Bakar, S.A. & Hamzah, N.A. & Maghsoudi, M. & Nadarajah, S., 2015. "Modeling loss data using composite models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 146-154.
    14. Reed, William J., 2001. "The Pareto, Zipf and other power laws," Economics Letters, Elsevier, vol. 74(1), pages 15-19, December.
    15. Xavier Gabaix & Rustam Ibragimov, 2011. "Rank - 1 / 2: A Simple Way to Improve the OLS Estimation of Tail Exponents," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 24-39, January.
    16. Ioannides, Yannis & Skouras, Spyros, 2013. "US city size distribution: Robustly Pareto, but only in the tail," Journal of Urban Economics, Elsevier, vol. 73(1), pages 18-29.
    17. Wen‐Tai Hsu, 2012. "Central Place Theory and City Size Distribution," Economic Journal, Royal Economic Society, vol. 122(563), pages 903-932, September.
    18. Muhammad Hilmi Abdul Majid & Kamarulzaman Ibrahim, 2021. "On Bayesian approach to composite Pareto models," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-22, September.
    19. Moshe Levy, 2009. "Gibrat's Law for (All) Cities: Comment," American Economic Review, American Economic Association, vol. 99(4), pages 1672-1675, September.
    20. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 29/13, Institute for Fiscal Studies.
    21. Biernacki, Christophe & Celeux, Gilles & Govaert, Gerard, 2003. "Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 561-575, January.
    22. Aili Tang, 2015. "Does Gibrat’s law hold for Swedish energy firms?," Empirical Economics, Springer, vol. 49(2), pages 659-674, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rafael González-Val, 2019. "US city-size distribution and space," Spatial Economic Analysis, Taylor & Francis Journals, vol. 14(3), pages 283-300, July.
    2. Marco Bee, 2020. "On discriminating between lognormal and Pareto tail: A mixture-based approach," DEM Working Papers 2020/9, Department of Economics and Management.
    3. Ramos, Arturo & Sanz-Gracia, Fernando & González-Val, Rafael, 2013. "A new framework for the US city size distribution: Empirical evidence and theory," MPRA Paper 52190, University Library of Munich, Germany.
    4. Arshad, Sidra & Hu, Shougeng & Ashraf, Badar Nadeem, 2019. "Zipf’s law, the coherence of the urban system and city size distribution: Evidence from Pakistan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 513(C), pages 87-103.
    5. Rafael González‐Val, 2019. "Historical urban growth in Europe (1300–1800)," Papers in Regional Science, Wiley Blackwell, vol. 98(2), pages 1115-1136, April.
    6. Giesen, Kristian & Suedekum, Jens, 2014. "City age and city size," European Economic Review, Elsevier, vol. 71(C), pages 193-208.
    7. Bee, Marco & Riccaboni, Massimo & Schiavo, Stefano, 2013. "The size distribution of US cities: Not Pareto, even in the tail," Economics Letters, Elsevier, vol. 120(2), pages 232-237.
    8. Arturo, Ramos, 2019. "Have the log-population processes stationary and independent increments? Empirical evidence for Italy, Spain and the USA along more than a century," MPRA Paper 93562, University Library of Munich, Germany.
    9. Kristian Giesen & Jens Suedekum, 2012. "The size distribution across all “cities”: a unifying approach," Working Papers 2012/2, Institut d'Economia de Barcelona (IEB).
    10. Bluhm, Richard & Krause, Melanie, 2022. "Top lights: Bright cities and their contribution to economic development," Journal of Development Economics, Elsevier, vol. 157(C).
    11. Ramos, Arturo & Sanz-Gracia, Fernando, 2015. "US city size distribution revisited: Theory and empirical evidence," MPRA Paper 64051, University Library of Munich, Germany.
    12. Ruben Dewitte & Michel Dumont & Glenn Rayp & Peter Willemé, 2022. "Unobserved heterogeneity in the productivity distribution and gains from trade," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(3), pages 1566-1597, August.
    13. Gualandi, Stefano & Toscani, Giuseppe, 2019. "Size distribution of cities: A kinetic explanation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 221-234.
    14. Luckstead, Jeff & Devadoss, Stephen & Danforth, Diana, 2017. "The size distributions of all Indian cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 237-249.
    15. Ramos, Arturo, 2015. "Log-growth distributions of US city sizes and non-Lévy processes," MPRA Paper 66561, University Library of Munich, Germany.
    16. Rafael González-Val, 2021. "The Spanish spatial city size distribution," Environment and Planning B, , vol. 48(6), pages 1609-1631, July.
    17. Halvarsson, Daniel, 2013. "Industry Differences in the Firm Size Distribution," Ratio Working Papers 214, The Ratio Institute.
    18. Duranton, Gilles & Puga, Diego, 2014. "The Growth of Cities," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 5, pages 781-853, Elsevier.
    19. Christian Schluter, 2021. "On Zipf’s law and the bias of Zipf regressions," Empirical Economics, Springer, vol. 61(2), pages 529-548, August.
    20. Christian Düben & Melanie Krause, 2021. "Population, light, and the size distribution of cities," Journal of Regional Science, Wiley Blackwell, vol. 61(1), pages 189-211, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:18:y:2024:i:2:d:10.1007_s11634-022-00497-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.