IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v11y2009i3d10.1007_s11009-007-9053-3.html
   My bibliography  Save this article

Asymptotic Results for the Sum of Dependent Non-identically Distributed Random Variables

Author

Listed:
  • Dominik Kortschak

    (Austrian Academy of Sciences)

  • Hansjörg Albrecher

    (Austrian Academy of Sciences
    University of Linz)

Abstract

In this paper we extend some results about the probability that the sum of n dependent subexponential random variables exceeds a given threshold u. In particular, the case of non-identically distributed and not necessarily positive random variables is investigated. Furthermore we establish criteria how far the tail of the marginal distribution of an individual summand may deviate from the others so that it still influences the asymptotic behavior of the sum. Finally we explicitly construct a dependence structure for which, even for regularly varying marginal distributions, no asymptotic limit of the tail of the sum exists. Some explicit calculations for diagonal copulas and t-copulas are given.

Suggested Citation

  • Dominik Kortschak & Hansjörg Albrecher, 2009. "Asymptotic Results for the Sum of Dependent Non-identically Distributed Random Variables," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 279-306, September.
  • Handle: RePEc:spr:metcap:v:11:y:2009:i:3:d:10.1007_s11009-007-9053-3
    DOI: 10.1007/s11009-007-9053-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-007-9053-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-007-9053-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alink, Stan & Lowe, Matthias & V. Wuthrich, Mario, 2004. "Diversification of aggregate dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 77-95, August.
    2. Klugman, Stuart A. & Parsa, Rahul, 1999. "Fitting bivariate loss distributions with copulas," Insurance: Mathematics and Economics, Elsevier, vol. 24(1-2), pages 139-148, March.
    3. Barbe, Philippe & Fougères, Anne-Laure & Genest, Christian, 2006. "On the Tail Behavior of Sums of Dependent Risks," ASTIN Bulletin, Cambridge University Press, vol. 36(2), pages 361-373, November.
    4. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serguei Foss & Andrew Richards, 2010. "On Sums of Conditionally Independent Subexponential Random Variables," Mathematics of Operations Research, INFORMS, vol. 35(1), pages 102-119, February.
    2. Coqueret, Guillaume, 2014. "Second order risk aggregation with the Bernstein copula," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 150-158.
    3. Asimit, Alexandru V. & Gerrard, Russell, 2016. "On the worst and least possible asymptotic dependence," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 218-234.
    4. Li, Xiaohu & Wu, Jintang, 2014. "Asymptotic tail behavior of Poisson shot-noise processes with interdependence between shock and arrival time," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 15-26.
    5. Weng, Chengguo & Zhang, Yi, 2012. "Characterization of multivariate heavy-tailed distribution families via copula," Journal of Multivariate Analysis, Elsevier, vol. 106(C), pages 178-186.
    6. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2012. "International diversification: An extreme value approach," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 871-885.
    7. Peter Tankov, 2014. "Tails of weakly dependent random vectors," Papers 1402.4683, arXiv.org, revised Jan 2016.
    8. Jaunė, Eglė & Šiaulys, Jonas, 2022. "Asymptotic risk decomposition for regularly varying distributions with tail dependence," Applied Mathematics and Computation, Elsevier, vol. 427(C).
    9. Cuberos A. & Masiello E. & Maume-Deschamps V., 2015. "High level quantile approximations of sums of risks," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-18, October.
    10. Shyamalkumar, Nariankadu D. & Tao, Siyang, 2022. "t-copula from the viewpoint of tail dependence matrices," Journal of Multivariate Analysis, Elsevier, vol. 191(C).
    11. Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
    12. Asimit, Alexandru V. & Li, Jinzhu, 2016. "Extremes for coherent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 332-341.
    13. Stefan Aulbach & Michael Falk & Timo Fuller, 2019. "Testing for a $$\delta $$ δ -neighborhood of a generalized Pareto copula," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 599-626, June.
    14. Asimit, Alexandru V. & Furman, Edward & Tang, Qihe & Vernic, Raluca, 2011. "Asymptotics for risk capital allocations based on Conditional Tail Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 310-324.
    15. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    16. Xiaohu Li & Jintang Wu & Jinsen Zhuang, 2015. "Asymptotic Multivariate Finite-time Ruin Probability with Statistically Dependent Heavy-tailed Claims," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 463-477, June.
    17. Chollete, Lorán & de la Peña, Victor & Lu, Ching-Chih, 2011. "International diversification: A copula approach," Journal of Banking & Finance, Elsevier, vol. 35(2), pages 403-417, February.
    18. Archil Gulisashvili & Peter Tankov, 2013. "Tail behavior of sums and differences of log-normal random variables," Papers 1309.3057, arXiv.org, revised Jan 2016.
    19. Jiang, Tao & Gao, Qingwu & Wang, Yuebao, 2014. "Max-sum equivalence of conditionally dependent random variables," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 60-66.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charpentier, Arthur & Segers, Johan, 2009. "Tails of multivariate Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1521-1537, August.
    2. Y. Malevergne & D. Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
    3. Coqueret, Guillaume, 2014. "Second order risk aggregation with the Bernstein copula," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 150-158.
    4. Oriol Roch Casellas & Antonio Alegre Escolano, 2005. "Testing the bivariate distribution of daily equity returns using copulas. An application to the Spanish stock market," Working Papers in Economics 143, Universitat de Barcelona. Espai de Recerca en Economia.
    5. Eling, Martin, 2012. "Fitting insurance claims to skewed distributions: Are the skew-normal and skew-student good models?," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 239-248.
    6. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    7. Hadi Safari-Katesari & Samira Zaroudi, 2021. "Analysing the impact of dependency on conditional survival functions using copulas," Statistics in Transition New Series, Polish Statistical Association, vol. 22(1), pages 217-226, March.
    8. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    9. Mainik Georg & Rüschendorf Ludger, 2012. "Ordering of multivariate risk models with respect to extreme portfolio losses," Statistics & Risk Modeling, De Gruyter, vol. 29(1), pages 73-106, March.
    10. Miriam Jaser & Aleksey Min, 2021. "On tests for symmetry and radial symmetry of bivariate copulas towards testing for ellipticity," Computational Statistics, Springer, vol. 36(3), pages 1-26, September.
    11. Li, Deyuan & Peng, Liang, 2009. "Goodness-of-fit test for tail copulas modeled by elliptical copulas," Statistics & Probability Letters, Elsevier, vol. 79(8), pages 1097-1104, April.
    12. Romain Biard & Claude Lefèvre & Stéphane Loisel, 2008. "Impact of correlation crises in risk theory," Post-Print hal-00308782, HAL.
    13. Katsuichiro Goda & Jiandong Ren, 2010. "Assessment of Seismic Loss Dependence Using Copula," Risk Analysis, John Wiley & Sons, vol. 30(7), pages 1076-1091, July.
    14. Embrechts, Paul & Neslehová, Johanna & Wüthrich, Mario V., 2009. "Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 164-169, April.
    15. Di Bernardino, Elena & Rullière, Didier, 2013. "Distortions of multivariate distribution functions and associated level curves: Applications in multivariate risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 190-205.
    16. Biard, Romain & Lefèvre, Claude & Loisel, Stéphane, 2008. "Impact of correlation crises in risk theory: Asymptotics of finite-time ruin probabilities for heavy-tailed claim amounts when some independence and stationarity assumptions are relaxed," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 412-421, December.
    17. Das, Bikramjit & Kratz, Marie, 2017. "Diversification benefits under multivariate second order regular variation," ESSEC Working Papers WP1706, ESSEC Research Center, ESSEC Business School.
    18. Elena Di Bernardino & Didier Rullière, 2012. "Distortions of multivariate risk measures: a level-sets based approach," Working Papers hal-00756387, HAL.
    19. Safari-Katesari Hadi & Zaroudi Samira, 2021. "Analysing the impact of dependency on conditional survival functions using copulas," Statistics in Transition New Series, Statistics Poland, vol. 22(1), pages 217-226, March.
    20. Genest, Christian & Rémillard, Bruno & Beaudoin, David, 2009. "Goodness-of-fit tests for copulas: A review and a power study," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 199-213, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:11:y:2009:i:3:d:10.1007_s11009-007-9053-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.