Mittag–Leffler Fractional Stochastic Integrals and Processes with Applications
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Giacomo Ascione & Bruno Toaldo, 2019. "A Semi-Markov Leaky Integrate-and-Fire Model," Mathematics, MDPI, vol. 7(11), pages 1-24, October.
- Bazzani, Armando & Bassi, Gabriele & Turchetti, Giorgio, 2003. "Diffusion and memory effects for stochastic processes and fractional Langevin equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 530-550.
- Anh, P.T. & Doan, T.S. & Huong, P.T., 2019. "A variation of constant formula for Caputo fractional stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 351-358.
- Tuckwell, Henry C., 2006. "Spatial neuron model with two-parameter Ornstein–Uhlenbeck input current," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(2), pages 495-510.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dmitry Zhukov & Vadim Zhmud & Konstantin Otradnov & Vladimir Kalinin, 2024. "Solution of Fractional Differential Boundary Value Problems with Arbitrary Values of Derivative Orders for Time Series Analysis," Mathematics, MDPI, vol. 12(24), pages 1-24, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bassi, Gabriele & Bazzani, Armando & Mais, Helmut & Turchetti, Giorgio, 2005. "Stochastic continuity equation and related processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 17-37.
- Abundo, Mario & Pirozzi, Enrica, 2018. "Integrated stationary Ornstein–Uhlenbeck process, and double integral processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 265-275.
- Wang, JinRong & Li, Xuezhu, 2015. "Ulam–Hyers stability of fractional Langevin equations," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 72-83.
- Luo, Danfeng & Tian, Mengquan & Zhu, Quanxin, 2022. "Some results on finite-time stability of stochastic fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
- Drozdov, A.D., 2007. "Fractional oscillator driven by a Gaussian noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 237-245.
- Li, Min & Huang, Chengming & Wang, Nan, 2024. "A variation of constant formula for Caputo–Hadamard fractional stochastic differential equations⋆," Statistics & Probability Letters, Elsevier, vol. 214(C).
- Tawfik, Ashraf M. & Elkamash, I.S., 2022. "On the correlation between Kappa and Lévy stable distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).
- James Hoult & Yubin Yan, 2024. "Numerical Approximation for a Stochastic Fractional Differential Equation Driven by Integrated Multiplicative Noise," Mathematics, MDPI, vol. 12(3), pages 1-18, January.
- Xu, Shuli & Feng, Yuqiang & Jiang, Jun & Nie, Na, 2022. "A variation of constant formula for Caputo fractional stochastic differential equations with jump–diffusion," Statistics & Probability Letters, Elsevier, vol. 185(C).
- Piryatinska, A. & Saichev, A.I. & Woyczynski, W.A., 2005. "Models of anomalous diffusion: the subdiffusive case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 375-420.
- Lu, Ziqiang & Zhu, Yuanguo, 2022. "Nonlinear impulsive problems for uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Huong, P.T. & The, N.T., 2023. "Well-posedness and regularity for solutions of Caputo stochastic fractional delay differential equations," Statistics & Probability Letters, Elsevier, vol. 195(C).
- Lansky, Petr & Polito, Federico & Sacerdote, Laura, 2023. "Input-output consistency in integrate and fire interconnected neurons," Applied Mathematics and Computation, Elsevier, vol. 440(C).
- Ahmadova, Arzu & Mahmudov, Nazim I., 2020. "Existence and uniqueness results for a class of fractional stochastic neutral differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Buyukkilic, F. & Ok Bayrakdar, Z. & Demirhan, D., 2015. "Investigation of cumulative growth process via Fibonacci method and fractional calculus," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 237-244.
- Giacomo Ascione & Enrica Pirozzi, 2020. "On the Construction of Some Fractional Stochastic Gompertz Models," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
More about this item
Keywords
Prabhakar fractional integrals; fractional stochastic differential equations; neuronal models;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:19:p:3094-:d:1491412. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.