IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i2p204-d1563665.html
   My bibliography  Save this article

Peano Theorems for Pedjeu–Ladde-Type Multi-Time Scale Stochastic Differential Equations Driven by Fractional Noises

Author

Listed:
  • Arcady Ponosov

    (Department of Mathematics, Norwegian University of Life Sciences, 1432 Aas, Norway
    These authors contributed equally to this work.)

  • Lev Idels

    (Department of Mathematics, Vancouver Island University, 900 Fifth St., Nanaimo, BC V9S 5S5, Canada
    These authors contributed equally to this work.)

Abstract

This paper examines fractional multi-time scale stochastic functional differential equations that, in addition, are driven by fractional noises. Based on a specially crafted fixed-point principle for the so-called “local operators”, we prove a Peano-type theorem on the existence of weak solutions, that is, those defined on an extended stochastic basis. To encompass all commonly used particular classes of fractional multi-time scale stochastic models, including those with random delays and impulses at random times, we consider equations with nonlinear random Volterra operators rather than functions. Some crucial properties of the associated integral operators, needed for the proofs of the main results, are studied as well. To illustrate major findings, several existence theorems, generalizing those known in the literature, are offered, with the emphasis put on the most popular examples such as ordinary stochastic differential equations driven by fractional noises, fractional stochastic differential equations with variable delays and fractional stochastic neutral differential equations.

Suggested Citation

  • Arcady Ponosov & Lev Idels, 2025. "Peano Theorems for Pedjeu–Ladde-Type Multi-Time Scale Stochastic Differential Equations Driven by Fractional Noises," Mathematics, MDPI, vol. 13(2), pages 1-21, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:204-:d:1563665
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/2/204/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/2/204/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guangjun Shen & Ruidong Xiao & Xiuwei Yin, 2020. "Averaging principle and stability of hybrid stochastic fractional differential equations driven by Lévy noise," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(12), pages 2115-2133, September.
    2. Zhi Wang & Litan Yan, 2013. "Stochastic Volterra Equation Driven by Wiener Process and Fractional Brownian Motion," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, November.
    3. Pedjeu, Jean-C. & Ladde, Gangaram S., 2012. "Stochastic fractional differential equations: Modeling, method and analysis," Chaos, Solitons & Fractals, Elsevier, vol. 45(3), pages 279-293.
    4. Zhang, Yinghan & Yang, Xiaoyuan, 2015. "Fractional stochastic Volterra equation perturbed by fractional Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 20-36.
    5. Fan, Xiliang & Huang, Xing & Suo, Yongqiang & Yuan, Chenggui, 2022. "Distribution dependent SDEs driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 151(C), pages 23-67.
    6. Anh, P.T. & Doan, T.S. & Huong, P.T., 2019. "A variation of constant formula for Caputo fractional stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 351-358.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdellatif Ben Makhlouf & Lassaad Mchiri & Hakeem A. Othman & Hafedh M. S. Rguigui & Salah Boulaaras, 2023. "Proportional Itô–Doob Stochastic Fractional Order Systems," Mathematics, MDPI, vol. 11(9), pages 1-14, April.
    2. Luo, Danfeng & Tian, Mengquan & Zhu, Quanxin, 2022. "Some results on finite-time stability of stochastic fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    3. Ahmadova, Arzu & Mahmudov, Nazim I., 2021. "Strong convergence of a Euler–Maruyama method for fractional stochastic Langevin equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 429-448.
    4. Li, Min & Huang, Chengming & Wang, Nan, 2024. "A variation of constant formula for Caputo–Hadamard fractional stochastic differential equations⋆," Statistics & Probability Letters, Elsevier, vol. 214(C).
    5. Zakaria Ali & Minyahil Abera Abebe & Talat Nazir, 2024. "Strong Convergence of Euler-Type Methods for Nonlinear Fractional Stochastic Differential Equations without Singular Kernel," Mathematics, MDPI, vol. 12(18), pages 1-36, September.
    6. James Hoult & Yubin Yan, 2024. "Numerical Approximation for a Stochastic Fractional Differential Equation Driven by Integrated Multiplicative Noise," Mathematics, MDPI, vol. 12(3), pages 1-18, January.
    7. Xu, Shuli & Feng, Yuqiang & Jiang, Jun & Nie, Na, 2022. "A variation of constant formula for Caputo fractional stochastic differential equations with jump–diffusion," Statistics & Probability Letters, Elsevier, vol. 185(C).
    8. Fan, Xiliang & Yu, Ting & Yuan, Chenggui, 2023. "Asymptotic behaviors for distribution dependent SDEs driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 383-415.
    9. Abouagwa, Mahmoud & Liu, Jicheng & Li, Ji, 2018. "Carathéodory approximations and stability of solutions to non-Lipschitz stochastic fractional differential equations of Itô-Doob type," Applied Mathematics and Computation, Elsevier, vol. 329(C), pages 143-153.
    10. Huong, P.T. & Anh, P.T., 2025. "On the asymptotic behavior of solutions to bilinear Caputo stochastic fractional differential equations," Statistics & Probability Letters, Elsevier, vol. 216(C).
    11. Lu, Ziqiang & Zhu, Yuanguo, 2022. "Nonlinear impulsive problems for uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    12. Yang, Zhiwei & Zheng, Xiangcheng & Zhang, Zhongqiang & Wang, Hong, 2021. "Strong convergence of a Euler-Maruyama scheme to a variable-order fractional stochastic differential equation driven by a multiplicative white noise," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Huong, P.T. & The, N.T., 2023. "Well-posedness and regularity for solutions of Caputo stochastic fractional delay differential equations," Statistics & Probability Letters, Elsevier, vol. 195(C).
    14. Abdelhamid Mohammed Djaouti & Zareen A. Khan & Muhammad Imran Liaqat & Ashraf Al-Quran, 2024. "Existence, Uniqueness, and Averaging Principle of Fractional Neutral Stochastic Differential Equations in the L p Space with the Framework of the Ψ-Caputo Derivative," Mathematics, MDPI, vol. 12(7), pages 1-21, March.
    15. Kahouli, Omar & Ben Makhlouf, Abdellatif & Mchiri, Lassaad & Rguigui, Hafedh, 2023. "Hyers–Ulam stability for a class of Hadamard fractional Itô–Doob stochastic integral equations," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    16. Ahmadova, Arzu & Mahmudov, Nazim I., 2020. "Existence and uniqueness results for a class of fractional stochastic neutral differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    17. Giacomo Ascione & Enrica Pirozzi, 2020. "On the Construction of Some Fractional Stochastic Gompertz Models," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
    18. Hendy, Ahmed S. & Zaky, Mahmoud A. & Suragan, Durvudkhan, 2022. "Discrete fractional stochastic Grönwall inequalities arising in the numerical analysis of multi-term fractional order stochastic differential equations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 193(C), pages 269-279.
    19. Enrica Pirozzi, 2024. "Mittag–Leffler Fractional Stochastic Integrals and Processes with Applications," Mathematics, MDPI, vol. 12(19), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:204-:d:1563665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.