IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v368y2006i2p495-510.html
   My bibliography  Save this article

Spatial neuron model with two-parameter Ornstein–Uhlenbeck input current

Author

Listed:
  • Tuckwell, Henry C.

Abstract

We consider a new and extended spatial neuron model in which the neuronal electrical depolarization from resting level satisfies a cable partial differential equation. The synaptic input current is also a function of space and time and satisfies a first order linear partial differential equation driven by a two-parameter random process. A natural choice for these random input processes is to make them two-parameter Poisson processes for both excitation and inhibition. For such inputs the mean subthreshold voltage is found in the case of an infinite cable and of finite cables. Assuming uniform amplitudes and rates exact expressions are obtained in the case of particular boundary conditions. We then consider a diffusion approximation and show that the membrane current is a two-parameter Ornstein–Uhlenbeck process, whose statistical properties are derived. Using representations for the voltage in terms of stochastic integrals in the plane we find, in the case of finite space intervals the mean, variance and covariance of the subthreshold voltage. For large times the voltage process is shown to be covariance stationary in time and the corresponding spectral density is found and compared with the result for a purely (two-parameter) white noise driven cable. The limiting white noise case is obtained from the extended model as the decay parameter becomes infinite. Finally, we develop useful simulation methods for the solution of the extended spatial model using properties of stochastic integrals involving eigenfunctions to obtain one-dimensional representations which are easily implemented.

Suggested Citation

  • Tuckwell, Henry C., 2006. "Spatial neuron model with two-parameter Ornstein–Uhlenbeck input current," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(2), pages 495-510.
  • Handle: RePEc:eee:phsmap:v:368:y:2006:i:2:p:495-510
    DOI: 10.1016/j.physa.2005.12.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437105012720
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2005.12.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrica Pirozzi, 2024. "Mittag–Leffler Fractional Stochastic Integrals and Processes with Applications," Mathematics, MDPI, vol. 12(19), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:368:y:2006:i:2:p:495-510. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.