IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v349y2005i3p375-420.html
   My bibliography  Save this article

Models of anomalous diffusion: the subdiffusive case

Author

Listed:
  • Piryatinska, A.
  • Saichev, A.I.
  • Woyczynski, W.A.

Abstract

The paper discusses a model for anomalous diffusion processes. Their one-point probability density functions (p.d.f.) are exact solutions of fractional diffusion equations. The model reflects the asymptotic behavior of a jump (anomalous random walk) process with random jump sizes and random inter-jump time intervals with infinite means (and variances) which do not satisfy the Law of Large Numbers. In the case when these intervals have a fractional exponential p.d.f., the fractional Komogorov–Feller equation for the corresponding anomalous diffusion is provided and methods of finding its solutions are discussed. Finally, some statistical properties of solutions of the related Langevin equation are studied. The subdiffusive case is explored in detail.

Suggested Citation

  • Piryatinska, A. & Saichev, A.I. & Woyczynski, W.A., 2005. "Models of anomalous diffusion: the subdiffusive case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 375-420.
  • Handle: RePEc:eee:phsmap:v:349:y:2005:i:3:p:375-420
    DOI: 10.1016/j.physa.2004.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104014098
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.
    2. Scalas, Enrico & Gorenflo, Rudolf & Mainardi, Francesco, 2000. "Fractional calculus and continuous-time finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 284(1), pages 376-384.
    3. Bazzani, Armando & Bassi, Gabriele & Turchetti, Giorgio, 2003. "Diffusion and memory effects for stochastic processes and fractional Langevin equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 530-550.
    4. Mann Jr, J.A. & Woyczynski, W.A., 2001. "Growing fractal interfaces in the presence of self-similar hopping surface diffusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 159-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md Rafiul Islam & Angela Peace & Daniel Medina & Tamer Oraby, 2020. "Integer Versus Fractional Order SEIR Deterministic and Stochastic Models of Measles," IJERPH, MDPI, vol. 17(6), pages 1-19, March.
    2. Ketelbuters, John-John & Hainaut, Donatien, 2022. "CDS pricing with fractional Hawkes processes," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1139-1150.
    3. Sibatov, R.T. & Svetukhin, V.V., 2015. "Fractional kinetics of subdiffusion-limited decomposition of a supersaturated solid solution," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 519-526.
    4. Golder, J. & Joelson, M. & Néel, M.C., 2011. "Mass transport with sorption in porous media," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(10), pages 2181-2189.
    5. Hainaut, Donatien, 2020. "Fractional Hawkes processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 549(C).
    6. Kumar, A. & Wyłomańska, A. & Połoczański, R. & Sundar, S., 2017. "Fractional Brownian motion time-changed by gamma and inverse gamma process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 648-667.
    7. Hainaut, Donatien, 2021. "A fractional multi-states model for insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 120-132.
    8. Meerschaert, Mark M. & Mortensen, Jeff & Wheatcraft, Stephen W., 2006. "Fractional vector calculus for fractional advection–dispersion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 367(C), pages 181-190.
    9. He, Yue & Kawai, Reiichiro, 2022. "Super- and subdiffusive positions in fractional Klein–Kramers equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    10. Magdziarz, Marcin, 2009. "Stochastic representation of subdiffusion processes with time-dependent drift," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3238-3252, October.
    11. Vyacheslav Svetukhin, 2021. "Nucleation Controlled by Non-Fickian Fractional Diffusion," Mathematics, MDPI, vol. 9(7), pages 1-11, March.
    12. Foad Shokrollahi, 2017. "The evaluation of geometric Asian power options under time changed mixed fractional Brownian motion," Papers 1712.05254, arXiv.org.
    13. Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
    14. Karipova, Gulnur & Magdziarz, Marcin, 2017. "Pricing of basket options in subdiffusive fractional Black–Scholes model," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 245-253.
    15. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    16. Du, Qiang & Toniazzi, Lorenzo & Zhou, Zhi, 2020. "Stochastic representation of solution to nonlocal-in-time diffusion," Stochastic Processes and their Applications, Elsevier, vol. 130(4), pages 2058-2085.
    17. Gu, Hui & Liang, Jin-Rong & Zhang, Yun-Xiu, 2012. "Time-changed geometric fractional Brownian motion and option pricing with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3971-3977.
    18. Mura, A. & Taqqu, M.S. & Mainardi, F., 2008. "Non-Markovian diffusion equations and processes: Analysis and simulations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(21), pages 5033-5064.
    19. Gorenflo, Rudolf & Mainardi, Francesco & Vivoli, Alessandro, 2007. "Continuous-time random walk and parametric subordination in fractional diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 34(1), pages 87-103.
    20. Gajda, Janusz & Magdziarz, Marcin, 2014. "Large deviations for subordinated Brownian motion and applications," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 149-156.
    21. Leonenko, N.N. & Papić, I. & Sikorskii, A. & Šuvak, N., 2017. "Heavy-tailed fractional Pearson diffusions," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3512-3535.
    22. Lv, Longjin & Xiao, Jianbin & Fan, Liangzhong & Ren, Fuyao, 2016. "Correlated continuous time random walk and option pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 100-107.
    23. Foad Shokrollahi & Adem Kılıçman & Marcin Magdziarz, 2016. "Pricing European options and currency options by time changed mixed fractional Brownian motion with transaction costs," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-22, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marseguerra, Marzio & Zoia, Andrea, 2008. "Pre-asymptotic corrections to fractional diffusion equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(12), pages 2668-2674.
    2. Zheng, Guang-Hui & Zhang, Quan-Guo, 2018. "Solving the backward problem for space-fractional diffusion equation by a fractional Tikhonov regularization method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 148(C), pages 37-47.
    3. Scalas, Enrico & Kaizoji, Taisei & Kirchler, Michael & Huber, Jürgen & Tedeschi, Alessandra, 2006. "Waiting times between orders and trades in double-auction markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 366(C), pages 463-471.
    4. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
    5. Saberi Zafarghandi, Fahimeh & Mohammadi, Maryam & Babolian, Esmail & Javadi, Shahnam, 2019. "Radial basis functions method for solving the fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 224-246.
    6. G. Fern'andez-Anaya & L. A. Quezada-T'ellez & B. Nu~nez-Zavala & D. Brun-Battistini, 2019. "Katugampola Generalized Conformal Derivative Approach to Inada Conditions and Solow-Swan Economic Growth Model," Papers 1907.00130, arXiv.org.
    7. Ya Qin & Adnan Khan & Izaz Ali & Maysaa Al Qurashi & Hassan Khan & Rasool Shah & Dumitru Baleanu, 2020. "An Efficient Analytical Approach for the Solution of Certain Fractional-Order Dynamical Systems," Energies, MDPI, vol. 13(11), pages 1-14, May.
    8. Scalas, Enrico & Gallegati, Mauro & Guerci, Eric & Mas, David & Tedeschi, Alessandra, 2006. "Growth and allocation of resources in economics: The agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 86-90.
    9. Jorge E. Macías-Díaz, 2019. "Numerically Efficient Methods for Variational Fractional Wave Equations: An Explicit Four-Step Scheme," Mathematics, MDPI, vol. 7(11), pages 1-27, November.
    10. Boukhouima, Adnane & Hattaf, Khalid & Lotfi, El Mehdi & Mahrouf, Marouane & Torres, Delfim F.M. & Yousfi, Noura, 2020. "Lyapunov functions for fractional-order systems in biology: Methods and applications," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Hussam Aljarrah & Mohammad Alaroud & Anuar Ishak & Maslina Darus, 2022. "Approximate Solution of Nonlinear Time-Fractional PDEs by Laplace Residual Power Series Method," Mathematics, MDPI, vol. 10(12), pages 1-16, June.
    12. Hayashi, Katsuhiko & Kaizoji, Taisei & Pichl, Lukáš, 2007. "Correlation patterns of NIKKEI index constituents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 16-21.
    13. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    14. Enrico Scalas & Rudolf Gorenflo & Hugh Luckock & Francesco Mainardi & Maurizio Mantelli & Marco Raberto, 2004. "Anomalous waiting times in high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 695-702.
    15. Hosseininia, M. & Heydari, M.H., 2019. "Meshfree moving least squares method for nonlinear variable-order time fractional 2D telegraph equation involving Mittag–Leffler non-singular kernel," Chaos, Solitons & Fractals, Elsevier, vol. 127(C), pages 389-399.
    16. Gu, Hui & Liang, Jin-Rong & Zhang, Yun-Xiu, 2012. "Time-changed geometric fractional Brownian motion and option pricing with transaction costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3971-3977.
    17. Ali Balcı, Mehmet, 2017. "Time fractional capital-induced labor migration model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 477(C), pages 91-98.
    18. Berardi, Luca & Serva, Maurizio, 2005. "Time and foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 353(C), pages 403-412.
    19. Masoliver, Jaume & Montero, Miquel & Perello, Josep & Weiss, George H., 2006. "The continuous time random walk formalism in financial markets," Journal of Economic Behavior & Organization, Elsevier, vol. 61(4), pages 577-598, December.
    20. Mainardi, Francesco & Raberto, Marco & Gorenflo, Rudolf & Scalas, Enrico, 2000. "Fractional calculus and continuous-time finance II: the waiting-time distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 287(3), pages 468-481.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:349:y:2005:i:3:p:375-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.