IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v265y2015icp237-244.html
   My bibliography  Save this article

Investigation of cumulative growth process via Fibonacci method and fractional calculus

Author

Listed:
  • Buyukkilic, F.
  • Ok Bayrakdar, Z.
  • Demirhan, D.

Abstract

In this study, cumulative growth of a physical quantity with Fibonacci method and fractional calculus is handled. The development of the growth process is described in terms of Fibonacci numbers, Mittag–Leffler and exponential functions. A compound growth process with the contribution of a constant quantity is also discussed. For the accumulation of residual quantity, equilibrium and lessening cases are discussed. To the best of our knowledge; compound growth process is solved for the first time in the framework of fractional calculus. In this sense, differintegral order of fractional calculus α has been achieved a physical content. It is emphasized that, in the basis of qualification of the fractional calculus for describing genuine complex physical systems with respect to ordinary descriptions is the cumulative growth mechanism with Fibonacci method. It is concluded that compound diminution and growth process mechanisms can be taken as a basis for the comprehension of derivative and integral operations in fractional calculus.

Suggested Citation

  • Buyukkilic, F. & Ok Bayrakdar, Z. & Demirhan, D., 2015. "Investigation of cumulative growth process via Fibonacci method and fractional calculus," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 237-244.
  • Handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:237-244
    DOI: 10.1016/j.amc.2015.05.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315006438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.05.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scalas, Enrico, 2006. "The application of continuous-time random walks in finance and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 362(2), pages 225-239.
    2. Stakhov, Alexey, 2006. "The golden section, secrets of the Egyptian civilization and harmony mathematics," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 490-505.
    3. Bazzani, Armando & Bassi, Gabriele & Turchetti, Giorgio, 2003. "Diffusion and memory effects for stochastic processes and fractional Langevin equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 530-550.
    4. Saxena, R.K. & Mathai, A.M. & Haubold, H.J., 2004. "On generalized fractional kinetic equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 344(3), pages 657-664.
    5. Stakhov, Alexey, 2006. "Fundamentals of a new kind of mathematics based on the Golden Section," Chaos, Solitons & Fractals, Elsevier, vol. 27(5), pages 1124-1146.
    6. Büyükkılıç, F. & Demirhan, D., 2009. "Cumulative growth with fibonacci approach, golden section and physics," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 24-32.
    7. Stakhov, A.P., 2005. "The Generalized Principle of the Golden Section and its applications in mathematics, science, and engineering," Chaos, Solitons & Fractals, Elsevier, vol. 26(2), pages 263-289.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zeng-bao & Zou, Yun-zhi & Huang, Nan-jing, 2016. "A class of global fractional-order projective dynamical systems involving set-valued perturbations," Applied Mathematics and Computation, Elsevier, vol. 277(C), pages 23-33.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Büyükkılıç, F. & Demirhan, D., 2009. "Cumulative growth with fibonacci approach, golden section and physics," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 24-32.
    2. Falcón, Sergio & Plaza, Ángel, 2007. "On the Fibonacci k-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 32(5), pages 1615-1624.
    3. Estrada, Ernesto, 2007. "Graphs (networks) with golden spectral ratio," Chaos, Solitons & Fractals, Elsevier, vol. 33(4), pages 1168-1182.
    4. Stakhov, Alexey, 2006. "The golden section, secrets of the Egyptian civilization and harmony mathematics," Chaos, Solitons & Fractals, Elsevier, vol. 30(2), pages 490-505.
    5. Falcón, Sergio & Plaza, Ángel, 2007. "The k-Fibonacci sequence and the Pascal 2-triangle," Chaos, Solitons & Fractals, Elsevier, vol. 33(1), pages 38-49.
    6. Kocer, E. Gokcen & Tuglu, Naim & Stakhov, Alexey, 2009. "On the m-extension of the Fibonacci and Lucas p-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 1890-1906.
    7. Adam, Maria & Assimakis, Nicholas & Farina, Alfonso, 2015. "Golden section, Fibonacci sequence and the time invariant Kalman and Lainiotis filters," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 817-831.
    8. Temirkhan S. Aleroev & Asmaa M. Elsayed, 2020. "Analytical and Approximate Solution for Solving the Vibration String Equation with a Fractional Derivative," Mathematics, MDPI, vol. 8(7), pages 1-9, July.
    9. Stakhov, Alexey, 2007. "The generalized golden proportions, a new theory of real numbers, and ternary mirror-symmetrical arithmetic," Chaos, Solitons & Fractals, Elsevier, vol. 33(2), pages 315-334.
    10. Scalas, Enrico & Gallegati, Mauro & Guerci, Eric & Mas, David & Tedeschi, Alessandra, 2006. "Growth and allocation of resources in economics: The agent-based approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(1), pages 86-90.
    11. Falcón, Sergio & Plaza, Ángel, 2009. "The metallic ratios as limits of complex valued transformations," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 1-13.
    12. Mollapourasl, R. & Ostadi, A., 2015. "On solution of functional integral equation of fractional order," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 631-643.
    13. D’Amico, Guglielmo & Janssen, Jacques & Manca, Raimondo, 2009. "European and American options: The semi-Markov case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(15), pages 3181-3194.
    14. Cristina E. Hretcanu & Mircea Crasmareanu, 2023. "The ( α , p )-Golden Metric Manifolds and Their Submanifolds," Mathematics, MDPI, vol. 11(14), pages 1-13, July.
    15. Bolster, Diogo & Benson, David A. & Singha, Kamini, 2017. "Upscaling chemical reactions in multicontinuum systems: When might time fractional equations work?," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 414-425.
    16. Stakhov, Alexey & Rozin, Boris, 2006. "The continuous functions for the Fibonacci and Lucas p-numbers," Chaos, Solitons & Fractals, Elsevier, vol. 28(4), pages 1014-1025.
    17. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
    18. Bassi, Gabriele & Bazzani, Armando & Mais, Helmut & Turchetti, Giorgio, 2005. "Stochastic continuity equation and related processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 17-37.
    19. Villarroel, Javier & Montero, Miquel, 2009. "On properties of continuous-time random walks with non-Poissonian jump-times," Chaos, Solitons & Fractals, Elsevier, vol. 42(1), pages 128-137.
    20. Masanao Aoki, "undated". "A New Non-ergodic Endogenous Growth Model," UCLA Economics Online Papers 392, UCLA Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:265:y:2015:i:c:p:237-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.