Numerical Approximation for a Stochastic Fractional Differential Equation Driven by Integrated Multiplicative Noise
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yang, Huizi & Yang, Zhanwen & Ma, Shufang, 2019. "Theoretical and numerical analysis for Volterra integro-differential equations with Itô integral under polynomially growth conditions," Applied Mathematics and Computation, Elsevier, vol. 360(C), pages 70-82.
- Anh, P.T. & Doan, T.S. & Huong, P.T., 2019. "A variation of constant formula for Caputo fractional stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 351-358.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luo, Danfeng & Tian, Mengquan & Zhu, Quanxin, 2022. "Some results on finite-time stability of stochastic fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
- Li, Min & Huang, Chengming & Wang, Nan, 2024. "A variation of constant formula for Caputo–Hadamard fractional stochastic differential equations⋆," Statistics & Probability Letters, Elsevier, vol. 214(C).
- Xu, Shuli & Feng, Yuqiang & Jiang, Jun & Nie, Na, 2022. "A variation of constant formula for Caputo fractional stochastic differential equations with jump–diffusion," Statistics & Probability Letters, Elsevier, vol. 185(C).
- Yang, Xiaochen & Yang, Zhanwen & Zhang, Chiping, 2023. "Numerical analysis of the Linearly implicit Euler method with truncated Wiener process for the stochastic SIR model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 1-14.
- Lu, Ziqiang & Zhu, Yuanguo, 2022. "Nonlinear impulsive problems for uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
- Huong, P.T. & The, N.T., 2023. "Well-posedness and regularity for solutions of Caputo stochastic fractional delay differential equations," Statistics & Probability Letters, Elsevier, vol. 195(C).
- Ahmadova, Arzu & Mahmudov, Nazim I., 2020. "Existence and uniqueness results for a class of fractional stochastic neutral differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
- Giacomo Ascione & Enrica Pirozzi, 2020. "On the Construction of Some Fractional Stochastic Gompertz Models," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
- Enrica Pirozzi, 2024. "Mittag–Leffler Fractional Stochastic Integrals and Processes with Applications," Mathematics, MDPI, vol. 12(19), pages 1-20, October.
More about this item
Keywords
stochastic fractional differential equations; convergence order; regularit; Brownian motion;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:3:p:365-:d:1324894. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.