IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v347y2005icp17-37.html
   My bibliography  Save this article

Stochastic continuity equation and related processes

Author

Listed:
  • Bassi, Gabriele
  • Bazzani, Armando
  • Mais, Helmut
  • Turchetti, Giorgio

Abstract

We consider the processes defined by a Langevin equation and the associated continuity equation. The average of the density function, solution of the continuity equation, satisfies the Fokker–Planck equation. For a volume preserving vector field the same equation is satisfied by the average of the integer powers of the density, which are the moments of the related probability density. For a generic vector field the Fokker–Planck equation for the moments is slightly modified. We first illustrate the problem in the simple case of a free particle subject to a white noise, since the averages can be computed by an elementary procedure using the factorization property of the correlation functions of the noise. The probabilistic meaning of the moments is discussed and the comparison between the analytical results and the numerical simulation is shown. The case of a generic Langevin equation is treated by computing the averages via a Dyson expansion after observing that, for a volume preserving vector field, any power of the density function satisfies the same continuity equation with the appropriate initial conditions. As a consequence the results obtained for the free particle are easily extended. An alternative approach is based on the characteristics of the continuity equation; the probability density of this process in an extended phase space still satisfies a Fokker–Planck equation and its moments coincide with the previous definition.

Suggested Citation

  • Bassi, Gabriele & Bazzani, Armando & Mais, Helmut & Turchetti, Giorgio, 2005. "Stochastic continuity equation and related processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 17-37.
  • Handle: RePEc:eee:phsmap:v:347:y:2005:i:c:p:17-37
    DOI: 10.1016/j.physa.2004.08.083
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437104011380
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2004.08.083?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bazzani, Armando & Bassi, Gabriele & Turchetti, Giorgio, 2003. "Diffusion and memory effects for stochastic processes and fractional Langevin equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 530-550.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abundo, Mario & Pirozzi, Enrica, 2018. "Integrated stationary Ornstein–Uhlenbeck process, and double integral processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 265-275.
    2. Wang, JinRong & Li, Xuezhu, 2015. "Ulam–Hyers stability of fractional Langevin equations," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 72-83.
    3. Drozdov, A.D., 2007. "Fractional oscillator driven by a Gaussian noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 237-245.
    4. Tawfik, Ashraf M. & Elkamash, I.S., 2022. "On the correlation between Kappa and Lévy stable distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).
    5. Piryatinska, A. & Saichev, A.I. & Woyczynski, W.A., 2005. "Models of anomalous diffusion: the subdiffusive case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 375-420.
    6. Buyukkilic, F. & Ok Bayrakdar, Z. & Demirhan, D., 2015. "Investigation of cumulative growth process via Fibonacci method and fractional calculus," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 237-244.
    7. Enrica Pirozzi, 2024. "Mittag–Leffler Fractional Stochastic Integrals and Processes with Applications," Mathematics, MDPI, vol. 12(19), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:347:y:2005:i:c:p:17-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.