IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i1p60-d304441.html
   My bibliography  Save this article

On the Construction of Some Fractional Stochastic Gompertz Models

Author

Listed:
  • Giacomo Ascione

    (Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Universitá degli Studi di Napoli Federico II, I-80126 Naples, Italy
    These authors contributed equally to this work.)

  • Enrica Pirozzi

    (Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Universitá degli Studi di Napoli Federico II, I-80126 Naples, Italy
    These authors contributed equally to this work.)

Abstract

The aim of this paper is the construction of stochastic versions for some fractional Gompertz curves. To do this, we first study a class of linear fractional-integral stochastic equations, proving existence and uniqueness of a Gaussian solution. Such kinds of equations are then used to construct fractional stochastic Gompertz models. Finally, a new fractional Gompertz model, based on the previous two, is introduced and a stochastic version of it is provided.

Suggested Citation

  • Giacomo Ascione & Enrica Pirozzi, 2020. "On the Construction of Some Fractional Stochastic Gompertz Models," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:60-:d:304441
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/1/60/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/1/60/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Yaozhong & Nualart, David & Song, Xiaoming, 2008. "A singular stochastic differential equation driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2075-2085, October.
    2. De Lauro, E. & De Martino, S. & De Siena, S. & Giorno, V., 2014. "Stochastic roots of growth phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 207-213.
    3. Anh, P.T. & Doan, T.S. & Huong, P.T., 2019. "A variation of constant formula for Caputo fractional stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 351-358.
    4. H. J. Haubold & A. M. Mathai & R. K. Saxena, 2011. "Mittag-Leffler Functions and Their Applications," Journal of Applied Mathematics, Hindawi, vol. 2011, pages 1-51, May.
    5. Changpin Li & Deliang Qian & YangQuan Chen, 2011. "On Riemann-Liouville and Caputo Derivatives," Discrete Dynamics in Nature and Society, Hindawi, vol. 2011, pages 1-15, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Balasubramaniam, P., 2022. "Solvability of Atangana-Baleanu-Riemann (ABR) fractional stochastic differential equations driven by Rosenblatt process via measure of noncompactness," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    2. Ascione, Giacomo & Leonenko, Nikolai & Pirozzi, Enrica, 2020. "Fractional Erlang queues," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3249-3276.
    3. Lihong Guo, 2024. "Renormalization Group Method for a Stochastic Differential Equation with Multiplicative Fractional White Noise," Mathematics, MDPI, vol. 12(3), pages 1-20, January.
    4. Virginia Kiryakova & Jordanka Paneva-Konovska, 2024. "Going Next after “A Guide to Special Functions in Fractional Calculus”: A Discussion Survey," Mathematics, MDPI, vol. 12(2), pages 1-39, January.
    5. Edgardo Alvarez & Carlos Lizama, 2020. "The Super-Diffusive Singular Perturbation Problem," Mathematics, MDPI, vol. 8(3), pages 1-14, March.
    6. John-Fritz Thony & Jean Vaillant, 2022. "Parameter Estimation for a Fractional Black–Scholes Model with Jumps from Discrete Time Observations," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    7. Sweilam, N.H. & El-Sakout, D.M. & Muttardi, M.M., 2020. "Numerical study for time fractional stochastic semi linear advection diffusion equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    8. B. L. S. Prakasa Rao, 2021. "Nonparametric Estimation for Stochastic Differential Equations Driven by Mixed Fractional Brownian Motion with Random Effects," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 554-568, August.
    9. Ravi Agarwal & Snezhana Hristova & Donal O’Regan & Peter Kopanov, 2020. "p -Moment Mittag–Leffler Stability of Riemann–Liouville Fractional Differential Equations with Random Impulses," Mathematics, MDPI, vol. 8(8), pages 1-16, August.
    10. Agahi, Hamzeh & Khalili, Monavar, 2020. "Truncated Mittag-Leffler distribution and superstatistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).
    11. Zhokh, Alexey & Strizhak, Peter, 2018. "Thiele modulus having regard to the anomalous diffusion in a catalyst pellet," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 58-63.
    12. Falkowski, Adrian & Słomiński, Leszek, 2017. "SDEs with constraints driven by semimartingales and processes with bounded p-variation," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3536-3557.
    13. Rakesh K. Parmar, 2015. "A Class of Extended Mittag–Leffler Functions and Their Properties Related to Integral Transforms and Fractional Calculus," Mathematics, MDPI, vol. 3(4), pages 1-14, November.
    14. Kęstutis Kubilius & Aidas Medžiūnas, 2020. "Positive Solutions of the Fractional SDEs with Non-Lipschitz Diffusion Coefficient," Mathematics, MDPI, vol. 9(1), pages 1-14, December.
    15. Marc Mukendi Mpanda & Safari Mukeru & Mmboniseni Mulaudzi, 2020. "Generalisation of Fractional-Cox-Ingersoll-Ross Process," Papers 2008.07798, arXiv.org, revised Jul 2022.
    16. Pavel Kříž & Leszek Szała, 2020. "Least-Squares Estimators of Drift Parameter for Discretely Observed Fractional Ornstein–Uhlenbeck Processes," Mathematics, MDPI, vol. 8(5), pages 1-20, May.
    17. Nikolai Leonenko & Ely Merzbach, 2015. "Fractional Poisson Fields," Methodology and Computing in Applied Probability, Springer, vol. 17(1), pages 155-168, March.
    18. Angstmann, C.N. & Henry, B.I. & Jacobs, B.A. & McGann, A.V., 2017. "A time-fractional generalised advection equation from a stochastic process," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 175-183.
    19. Xiong, Xiangtuan & Xue, Xuemin, 2019. "A fractional Tikhonov regularization method for identifying a space-dependent source in the time-fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 349(C), pages 292-303.
    20. Soma Dhar & Lipi B. Mahanta & Kishore Kumar Das, 2019. "Formulation Of The Simple Markovian Model Using Fractional Calculus Approach And Its Application To Analysis Of Queue Behaviour Of Severe Patients," Statistics in Transition New Series, Polish Statistical Association, vol. 20(1), pages 117-129, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:1:p:60-:d:304441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.