IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v258y2015icp72-83.html
   My bibliography  Save this article

Ulam–Hyers stability of fractional Langevin equations

Author

Listed:
  • Wang, JinRong
  • Li, Xuezhu

Abstract

In this paper, we discuss Ulam–Hyers stability of nonlinear fractional Langevin equations by using the boundedness, monotonicity and nonnegative properties of classical and generalized Mittag-Leffler functions. Further, the same problem for the associated impulsive systems is investigated. Finally, an example is given to illustrate our theoretical results.

Suggested Citation

  • Wang, JinRong & Li, Xuezhu, 2015. "Ulam–Hyers stability of fractional Langevin equations," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 72-83.
  • Handle: RePEc:eee:apmaco:v:258:y:2015:i:c:p:72-83
    DOI: 10.1016/j.amc.2015.01.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315001435
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.01.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bazzani, Armando & Bassi, Gabriele & Turchetti, Giorgio, 2003. "Diffusion and memory effects for stochastic processes and fractional Langevin equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(3), pages 530-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zakir Ullah & Amjad Ali & Rahmat Ali Khan & Muhammad Iqbal, 2018. "Existence Results To A Class Of Hybrid Fractional Differential Equations," Matrix Science Mathematic (MSMK), Zibeline International Publishing, vol. 2(1), pages 13-17, January.
    2. Huang, Jizhao & Luo, Danfeng & Zhu, Quanxin, 2023. "Relatively exact controllability for fractional stochastic delay differential equations of order κ∈(1,2]," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Kumar, Vipin & Stamov, Gani & Stamova, Ivanka, 2023. "Controllability Results for a Class of Piecewise Nonlinear Impulsive Fractional Dynamic Systems," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    4. Abdulkafi M. Saeed & Mohammed S. Abdo & Mdi Begum Jeelani, 2021. "Existence and Ulam–Hyers Stability of a Fractional-Order Coupled System in the Frame of Generalized Hilfer Derivatives," Mathematics, MDPI, vol. 9(20), pages 1-17, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bassi, Gabriele & Bazzani, Armando & Mais, Helmut & Turchetti, Giorgio, 2005. "Stochastic continuity equation and related processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 17-37.
    2. Abundo, Mario & Pirozzi, Enrica, 2018. "Integrated stationary Ornstein–Uhlenbeck process, and double integral processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 265-275.
    3. Drozdov, A.D., 2007. "Fractional oscillator driven by a Gaussian noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 376(C), pages 237-245.
    4. Tawfik, Ashraf M. & Elkamash, I.S., 2022. "On the correlation between Kappa and Lévy stable distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 601(C).
    5. Piryatinska, A. & Saichev, A.I. & Woyczynski, W.A., 2005. "Models of anomalous diffusion: the subdiffusive case," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 349(3), pages 375-420.
    6. Buyukkilic, F. & Ok Bayrakdar, Z. & Demirhan, D., 2015. "Investigation of cumulative growth process via Fibonacci method and fractional calculus," Applied Mathematics and Computation, Elsevier, vol. 265(C), pages 237-244.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:258:y:2015:i:c:p:72-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.