IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v145y2019icp351-358.html
   My bibliography  Save this article

A variation of constant formula for Caputo fractional stochastic differential equations

Author

Listed:
  • Anh, P.T.
  • Doan, T.S.
  • Huong, P.T.

Abstract

We establish and prove a variation of constant formula for Caputo fractional stochastic differential equations whose coefficients satisfy a standard Lipschitz condition. The main ingredient in the proof is to use Ito’s representation theorem and the known variation of constant formula for deterministic Caputo fractional differential equations. As a consequence, for these systems we point out the coincidence between the notion of classical solutions introduced in Wang et al. (2016) and mild solutions introduced in Sakthivel et al. (2013).

Suggested Citation

  • Anh, P.T. & Doan, T.S. & Huong, P.T., 2019. "A variation of constant formula for Caputo fractional stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 145(C), pages 351-358.
  • Handle: RePEc:eee:stapro:v:145:y:2019:i:c:p:351-358
    DOI: 10.1016/j.spl.2018.10.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715218303262
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2018.10.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Hoult & Yubin Yan, 2024. "Numerical Approximation for a Stochastic Fractional Differential Equation Driven by Integrated Multiplicative Noise," Mathematics, MDPI, vol. 12(3), pages 1-18, January.
    2. Lu, Ziqiang & Zhu, Yuanguo, 2022. "Nonlinear impulsive problems for uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    3. Huong, P.T. & The, N.T., 2023. "Well-posedness and regularity for solutions of Caputo stochastic fractional delay differential equations," Statistics & Probability Letters, Elsevier, vol. 195(C).
    4. Xu, Shuli & Feng, Yuqiang & Jiang, Jun & Nie, Na, 2022. "A variation of constant formula for Caputo fractional stochastic differential equations with jump–diffusion," Statistics & Probability Letters, Elsevier, vol. 185(C).
    5. Giacomo Ascione & Enrica Pirozzi, 2020. "On the Construction of Some Fractional Stochastic Gompertz Models," Mathematics, MDPI, vol. 8(1), pages 1-24, January.
    6. Luo, Danfeng & Tian, Mengquan & Zhu, Quanxin, 2022. "Some results on finite-time stability of stochastic fractional-order delay differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    7. Ahmadova, Arzu & Mahmudov, Nazim I., 2020. "Existence and uniqueness results for a class of fractional stochastic neutral differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    8. Enrica Pirozzi, 2024. "Mittag–Leffler Fractional Stochastic Integrals and Processes with Applications," Mathematics, MDPI, vol. 12(19), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:145:y:2019:i:c:p:351-358. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.