IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v9y2021i12p1400-d576325.html
   My bibliography  Save this article

An α -Monotone Generalized Log-Moyal Distribution with Applications to Environmental Data

Author

Listed:
  • Talha Arslan

    (Department of Econometrics, Van Yüzüncü Yıl University, Van 65080, Turkey)

Abstract

Modeling environmental data plays a crucial role in explaining environmental phenomena. In some cases, well-known distributions, e.g., Weibull, inverse Weibull, and Gumbel distributions, cannot model environmental events adequately. Therefore, many authors tried to find new statistical distributions to represent environmental phenomena more accurately. In this paper, an α -monotone generalized log-Moyal ( α -GlogM) distribution is introduced and some statistical properties such as cumulative distribution function, hazard rate function (hrf), scale-mixture representation, and moments are derived. The hrf of the α -GlogM distribution can form a variety of shapes including the bathtub shape. The α -GlogM distribution converges to generalized half-normal (GHN) and inverse GHN distributions. It reduces to slash GHN and α -monotone inverse GHN distributions for certain parameter settings. Environmental data sets are used to show implementations of the α -GlogM distribution and also to compare its modeling performance with its rivals. The comparisons are carried out using well-known information criteria and goodness-of-fit statistics. The comparison results show that the α -GlogM distribution is preferable over its rivals in terms of the modeling capability.

Suggested Citation

  • Talha Arslan, 2021. "An α -Monotone Generalized Log-Moyal Distribution with Applications to Environmental Data," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1400-:d:576325
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/9/12/1400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/9/12/1400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan M. Astorga & Héctor W. Gómez & Heleno Bolfarine, 2017. "Slashed generalized exponential distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(5), pages 2091-2102, March.
    2. Jimmy Reyes & Inmaculada Barranco-Chamorro & Héctor W. Gómez, 2020. "Generalized modified slash distribution with applications," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(8), pages 2025-2048, April.
    3. Neveka Olmos & Héctor Varela & Heleno Bolfarine & Héctor Gómez, 2014. "An extension of the generalized half-normal distribution," Statistical Papers, Springer, vol. 55(4), pages 967-981, November.
    4. Yuri A. Iriarte & F. Vilca & Héctor Varela & Héctor W. Gómez, 2017. "Slashed generalized Rayleigh distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(10), pages 4686-4699, May.
    5. Gómez, Yolanda M. & Bolfarine, Heleno & Gómez, Héctor W., 2019. "Gumbel distribution with heavy tails and applications to environmental data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 157(C), pages 115-129.
    6. Neveka Olmos & Héctor Varela & Héctor Gómez & Heleno Bolfarine, 2012. "An extension of the half-normal distribution," Statistical Papers, Springer, vol. 53(4), pages 875-886, November.
    7. William H. Rogers & John W. Tukey, 1972. "Understanding some long‐tailed symmetrical distributions," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 26(3), pages 211-226, September.
    8. A. Asgharzadeh & Hassan S. Bakouch & M. Habibi, 2017. "A generalized binomial exponential 2 distribution: modeling and applications to hydrologic events," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(13), pages 2368-2387, October.
    9. M. C. Jones, 2020. "On univariate slash distributions, continuous and discrete," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 645-657, June.
    10. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    11. Arslan, Olcay, 2008. "An alternative multivariate skew-slash distribution," Statistics & Probability Letters, Elsevier, vol. 78(16), pages 2756-2761, November.
    12. Gómez, Héctor W. & Quintana, Fernando A. & Torres, Francisco J., 2007. "A new family of slash-distributions with elliptical contours," Statistics & Probability Letters, Elsevier, vol. 77(7), pages 717-725, April.
    13. Yuri A. Iriarte & Nabor O. Castillo & Heleno Bolfarine & Héctor W. Gómez, 2018. "Modified slashed-Rayleigh distribution," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(13), pages 3220-3233, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neveka M. Olmos & Emilio Gómez-Déniz & Osvaldo Venegas, 2022. "The Heavy-Tailed Gleser Model: Properties, Estimation, and Applications," Mathematics, MDPI, vol. 10(23), pages 1-16, December.
    2. Juan M. Astorga & Jimmy Reyes & Karol I. Santoro & Osvaldo Venegas & Héctor W. Gómez, 2020. "A Reliability Model Based on the Incomplete Generalized Integro-Exponential Function," Mathematics, MDPI, vol. 8(9), pages 1-12, September.
    3. Jaime S. Castillo & Inmaculada Barranco-Chamorro & Osvaldo Venegas & Héctor W. Gómez, 2023. "Slash-Weighted Lindley Distribution: Properties, Inference, and Applications," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
    4. Francisco A. Segovia & Yolanda M. Gómez & Osvaldo Venegas & Héctor W. Gómez, 2020. "A Power Maxwell Distribution with Heavy Tails and Applications," Mathematics, MDPI, vol. 8(7), pages 1-20, July.
    5. Jimmy Reyes & Yuri A. Iriarte, 2023. "A New Family of Modified Slash Distributions with Applications," Mathematics, MDPI, vol. 11(13), pages 1-15, July.
    6. Jimmy Reyes & Yuri A. Iriarte & Pedro Jodrá & Héctor W. Gómez, 2019. "The Slash Lindley-Weibull Distribution," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 235-251, March.
    7. Neveka Olmos & Héctor Varela & Heleno Bolfarine & Héctor Gómez, 2014. "An extension of the generalized half-normal distribution," Statistical Papers, Springer, vol. 55(4), pages 967-981, November.
    8. Gómez, Yolanda M. & Bolfarine, Heleno & Gómez, Héctor W., 2019. "Gumbel distribution with heavy tails and applications to environmental data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 157(C), pages 115-129.
    9. Leonardo Barrios & Yolanda M. Gómez & Osvaldo Venegas & Inmaculada Barranco-Chamorro & Héctor W. Gómez, 2022. "The Slashed Power Half-Normal Distribution with Applications," Mathematics, MDPI, vol. 10(9), pages 1-21, May.
    10. M. Arendarczyk & T. J. Kozubowski & A. K. Panorska, 2023. "Slash distributions, generalized convolutions, and extremes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 593-617, August.
    11. Karol I. Santoro & Diego I. Gallardo & Osvaldo Venegas & Isaac E. Cortés & Héctor W. Gómez, 2023. "A Heavy-Tailed Distribution Based on the Lomax–Rayleigh Distribution with Applications to Medical Data," Mathematics, MDPI, vol. 11(22), pages 1-15, November.
    12. Ali Genç, 2013. "A skew extension of the slash distribution via beta-normal distribution," Statistical Papers, Springer, vol. 54(2), pages 427-442, May.
    13. del Castillo, J.M., 2016. "Slash distributions of the sum of independent logistic random variables," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 111-118.
    14. Pilar A. Rivera & Diego I. Gallardo & Osvaldo Venegas & Marcelo Bourguignon & Héctor W. Gómez, 2021. "An Extension of the Truncated-Exponential Skew- Normal Distribution," Mathematics, MDPI, vol. 9(16), pages 1-11, August.
    15. Alcantara, Izabel Cristina & Cysneiros, Francisco José A., 2013. "Linear regression models with slash-elliptical errors," Computational Statistics & Data Analysis, Elsevier, vol. 64(C), pages 153-164.
    16. Arslan, Olcay, 2009. "Maximum likelihood parameter estimation for the multivariate skew-slash distribution," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2158-2165, October.
    17. Wenhao Gui, 2014. "A generalization of the slashed distribution via alpha skew normal distribution," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(4), pages 547-563, November.
    18. Neveka M. Olmos & Emilio Gómez-Déniz & Osvaldo Venegas & Héctor W. Gómez, 2024. "A Composite Half-Normal-Pareto Distribution with Applications to Income and Expenditure Data," Mathematics, MDPI, vol. 12(11), pages 1-17, May.
    19. Neveka Olmos & Héctor Varela & Héctor Gómez & Heleno Bolfarine, 2012. "An extension of the half-normal distribution," Statistical Papers, Springer, vol. 53(4), pages 875-886, November.
    20. Marjan Mansourian & Anoshirvan Kazemnejad & Iraj Kazemi & Farid Zayeri & Masoud Soheilian, 2012. "Bayesian analysis of longitudinal ordered data with flexible random effects using McMC: application to diabetic macular Edema data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 1087-1100, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:9:y:2021:i:12:p:1400-:d:576325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.