IDEAS home Printed from https://ideas.repec.org/a/spr/jstada/v3y2016i1d10.1186_s40488-016-0041-4.html
   My bibliography  Save this article

An extended-G geometric family

Author

Listed:
  • Gauss M. Cordeiro

    (Universidade Federal de Pernambuco, Cidade Universitária)

  • Giovana O. Silva

    (Universidade Federal da Bahia, Av. Adhemar de Barros, s/n°)

  • Edwin M. M. Ortega

    (Universidade de São Paulo, Av. Pádua Dias 11)

Abstract

We introduce and study the extended-G geometric family of distributions, which contains as special models some important distributions such as the XTG (Xie et al. 2002) geometric, Weibull geometric, Chen (Chen 2000) geometric, Gompertz geometric, among others. This family not only includes distributions with bathtub and unimodal failure rate functions but provides a broader class of monotone failure rates. Its density function can be expressed as a linear mixture of extended-G densities. We derive explicit expansions for the ordinary and incomplete moments, generating function, mean deviations and Rénvy entropy. The density of the order statistics can also be given as a linear mixture of extended-G densities. The model parameters are estimated by maximum likelihood. The potentiality of the new family is illustrated by means of an application to real data. MSC 60E05, 62P10, 62P30

Suggested Citation

  • Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
  • Handle: RePEc:spr:jstada:v:3:y:2016:i:1:d:10.1186_s40488-016-0041-4
    DOI: 10.1186/s40488-016-0041-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40488-016-0041-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40488-016-0041-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2007. "A flexible Weibull extension," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 719-726.
    2. Carrasco, Jalmar M.F. & Ortega, Edwin M.M. & Cordeiro, Gauss M., 2008. "A generalized modified Weibull distribution for lifetime modeling," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 450-462, December.
    3. Nadarajah, Saralees & Kotz, Samuel, 2006. "The beta exponential distribution," Reliability Engineering and System Safety, Elsevier, vol. 91(6), pages 689-697.
    4. Adamidis, K. & Loukas, S., 1998. "A lifetime distribution with decreasing failure rate," Statistics & Probability Letters, Elsevier, vol. 39(1), pages 35-42, July.
    5. Min Wang & Ibrahim Elbatal, 2015. "The modified Weibull geometric distribution," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 303-315, December.
    6. Chen, Zhenmin, 2000. "A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function," Statistics & Probability Letters, Elsevier, vol. 49(2), pages 155-161, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruan Spies & Robbie Duschinsky, 2021. "Inheriting Mary Ainsworth and the Strange Situation: Questions of Legacy, Authority, and Methodology for Contemporary Developmental Attachment Researchers," SAGE Open, , vol. 11(3), pages 21582440211, September.
    2. Mei-Ling Ting Lee & G. A. Whitmore, 2019. "A new class of survival distribution for degradation processes subject to shocks," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-24, December.
    3. Prataviera, Fábio & Ortega, Edwin M.M. & Cordeiro, Gauss M. & Pescim, Rodrigo R. & Verssani, Bruna A.W., 2018. "A new generalized odd log-logistic flexible Weibull regression model with applications in repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 13-26.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    2. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    3. Lemonte, Artur J., 2013. "A new exponential-type distribution with constant, decreasing, increasing, upside-down bathtub and bathtub-shaped failure rate function," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 149-170.
    4. Bagheri, S.F. & Bahrami Samani, E. & Ganjali, M., 2016. "The generalized modified Weibull power series distribution: Theory and applications," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 136-160.
    5. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    6. Singla, Neetu & Jain, Kanchan & Kumar Sharma, Suresh, 2012. "The Beta Generalized Weibull distribution: Properties and applications," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 5-15.
    7. Hadi Saboori & Ghobad Barmalzan & Seyyed Masih Ayat, 2020. "Generalized Modified Inverse Weibull Distribution: Its Properties and Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 247-269, November.
    8. Barriga, Gladys D.C. & Louzada-Neto, Franscisco & Cancho, Vicente G., 2011. "The complementary exponential power lifetime model," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1250-1259, March.
    9. Gupta, Ashutosh & Mukherjee, Bhaswati & Upadhyay, S.K., 2008. "Weibull extension model: A Bayes study using Markov chain Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1434-1443.
    10. Rodrigues, Josemar & Balakrishnan, N. & Cordeiro, Gauss M. & de Castro, Mário, 2011. "A unified view on lifetime distributions arising from selection mechanisms," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3311-3319, December.
    11. S. Nadarajah & S. Bakar, 2013. "A new R package for actuarial survival models," Computational Statistics, Springer, vol. 28(5), pages 2139-2160, October.
    12. Hassan S. Bakouch & Abdus Saboor & Muhammad Nauman Khan, 2021. "Modified Beta Linear Exponential Distribution with Hydrologic Applications," Annals of Data Science, Springer, vol. 8(1), pages 131-157, March.
    13. C. Satheesh Kumar & S. Dharmaja, 2014. "On some properties of Kies distribution," METRON, Springer;Sapienza Università di Roma, vol. 72(1), pages 97-122, April.
    14. Zhang, Tieling & Dwight, Richard, 2013. "Choosing an optimal model for failure data analysis by graphical approach," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 111-123.
    15. Ahmad, Abd EL-Baset A. & Ghazal, M.G.M., 2020. "Exponentiated additive Weibull distribution," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    16. Chahkandi, M. & Ganjali, M., 2009. "On some lifetime distributions with decreasing failure rate," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4433-4440, October.
    17. Liu, Junfeng & Wang, Yi, 2013. "On Crevecoeur’s bathtub-shaped failure rate model," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 645-660.
    18. Pescim, Rodrigo R. & Demétrio, Clarice G.B. & Cordeiro, Gauss M. & Ortega, Edwin M.M. & Urbano, Mariana R., 2010. "The beta generalized half-normal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 945-957, April.
    19. Gokarna R. Aryal & Keshav P. Pokhrel & Netra Khanal & Chris P. Tsokos, 2019. "Reliability Models Using the Composite Generalizers of Weibull Distribution," Annals of Data Science, Springer, vol. 6(4), pages 807-829, December.
    20. Jorge Navarro & Antonio Guillamón & María del Carmen Ruiz, 2009. "Generalized mixtures in reliability modelling: Applications to the construction of bathtub shaped hazard models and the study of systems," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 323-337, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jstada:v:3:y:2016:i:1:d:10.1186_s40488-016-0041-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.