IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0245627.html
   My bibliography  Save this article

A new regression model for bounded response variable: An alternative to the beta and unit-Lindley regression models

Author

Listed:
  • Emrah Altun
  • M El-Morshedy
  • M S Eliwa

Abstract

A new distribution defined on (0,1) interval is introduced. Its probability density and cumulative distribution functions have simple forms. Thanks to its simple forms, the moments, incomplete moments and quantile function of the proposed distribution are derived and obtained in explicit forms. Four parameter estimation methods are used to estimate the unknown parameter of the distribution. Besides, simulation study is implemented to compare the efficiencies of these parameter estimation methods. More importantly, owing to the proposed distribution, we provide an alternative regression model for the bounded response variable. The proposed regression model is compared with the beta and unit-Lindley regression models based on two real data sets.

Suggested Citation

  • Emrah Altun & M El-Morshedy & M S Eliwa, 2021. "A new regression model for bounded response variable: An alternative to the beta and unit-Lindley regression models," PLOS ONE, Public Library of Science, vol. 16(1), pages 1-15, January.
  • Handle: RePEc:plo:pone00:0245627
    DOI: 10.1371/journal.pone.0245627
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245627
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0245627&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0245627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mustafa Ç. Korkmaz & Emrah Altun & Morad Alizadeh & M. El-Morshedy, 2021. "The Log Exponential-Power Distribution: Properties, Estimations and Quantile Regression Model," Mathematics, MDPI, vol. 9(21), pages 1-19, October.
    2. Francesca Condino & Filippo Domma, 2023. "Unit Distributions: A General Framework, Some Special Cases, and the Regression Unit-Dagum Models," Mathematics, MDPI, vol. 11(13), pages 1-25, June.
    3. Zubair Ahmad & Zahra Almaspoor & Faridoon Khan & Mahmoud El-Morshedy, 2022. "On Predictive Modeling Using a New Flexible Weibull Distribution and Machine Learning Approach: Analyzing the COVID-19 Data," Mathematics, MDPI, vol. 10(11), pages 1-26, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0245627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.