IDEAS home Printed from https://ideas.repec.org/a/spr/aodasc/v8y2021i4d10.1007_s40745-019-00233-4.html
   My bibliography  Save this article

Parameter Estimation for the Exponentiated Kumaraswamy-Power Function Distribution Based on Order Statistics with Application

Author

Listed:
  • Devendra Kumar

    (Central University of Haryana)

  • Neetu Jain

    (University of Delhi)

  • Mazen Nassar

    (King Abdulaziz University
    Zagazig University)

  • Osama Eraki Abo-Kasem

    (Zagazig University)

Abstract

Exponentiated Kumaraswamy-power function (EKPF) distribution has been proposed recently by Bursa and Ozel (Hacet J Math Stat 46:277–292, 2017) as a quite flexible in terms of probability density and hazard rate functions than power function distribution. In this paper, we obtain the explicit expressions for the single, double (product), triple and quadruple moments and moment generating function for single, double, triple and quadruple of order statistics of the EKPF distribution. By using these relations, we have tabulated the means and variances of order statistics from samples of sizes up to 10 for various values of the parameters. We use five frequentist estimation methods to estimate the unknown parameters and a simulation study is used to compare the performance of the different estimators. Finally, we analyse a real data set for illustrative purpose.

Suggested Citation

  • Devendra Kumar & Neetu Jain & Mazen Nassar & Osama Eraki Abo-Kasem, 2021. "Parameter Estimation for the Exponentiated Kumaraswamy-Power Function Distribution Based on Order Statistics with Application," Annals of Data Science, Springer, vol. 8(4), pages 785-811, December.
  • Handle: RePEc:spr:aodasc:v:8:y:2021:i:4:d:10.1007_s40745-019-00233-4
    DOI: 10.1007/s40745-019-00233-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40745-019-00233-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40745-019-00233-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Udo Kamps, 1991. "A general recurrence relation for moments of order statistics in a class of probability distributions and characterizations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 38(1), pages 215-225, December.
    2. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2007. "A flexible Weibull extension," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 719-726.
    3. Devendra Kumar & Sanku Dey & Saralees Nadarajah, 2017. "Extended exponential distribution based on order statistics," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(18), pages 9166-9184, September.
    4. Devendra Kumar & Anju Goyal, 2019. "Order Statistics from the Power Lindley Distribution and Associated Inference with Application," Annals of Data Science, Springer, vol. 6(1), pages 153-177, March.
    5. Devendra Kumar & Anju Goyal, 2019. "Generalized Lindley Distribution Based on Order Statistics and Associated Inference with Application," Annals of Data Science, Springer, vol. 6(4), pages 707-736, December.
    6. Mansoor Rashid Malik & Devendra Kumar, 2019. "Generalized Pareto Distribution Based On Generalized Order Statistics And Associated Inference," Statistics in Transition New Series, Polish Statistical Association, vol. 20(3), pages 57-79, September.
    7. M. E. Ghitany & E. K. Al-Hussaini & R. A. Al-Jarallah, 2005. "Marshall-Olkin extended weibull distribution and its application to censored data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(10), pages 1025-1034.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Malik Mansoor Rashid & Kumar Devendra, 2019. "Generalized Pareto Distribution Based On Generalized Order Statistics And Associated Inference," Statistics in Transition New Series, Statistics Poland, vol. 20(3), pages 57-79, September.
    2. Mansoor Rashid Malik & Devendra Kumar, 2019. "Generalized Pareto Distribution Based On Generalized Order Statistics And Associated Inference," Statistics in Transition New Series, Polish Statistical Association, vol. 20(3), pages 57-79, September.
    3. Devendra Kumar & Anju Goyal, 2019. "Generalized Lindley Distribution Based on Order Statistics and Associated Inference with Application," Annals of Data Science, Springer, vol. 6(4), pages 707-736, December.
    4. repec:exl:29stat:v:20:y:2019:i:3:p:57-80 is not listed on IDEAS
    5. Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
    6. Abukari Abdul-Lateef & Amadu Yakubu & Shei Baba Sayibu, 2024. "On the Topp-Leone Generalized Power Weibull Distribution: Properties, Applications and Regression," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 13(2), pages 1-1.
    7. Muhammad H. Tahir & Muhammad Adnan Hussain & Gauss M. Cordeiro & M. El-Morshedy & M. S. Eliwa, 2020. "A New Kumaraswamy Generalized Family of Distributions with Properties, Applications, and Bivariate Extension," Mathematics, MDPI, vol. 8(11), pages 1-28, November.
    8. Gauss Cordeiro & Artur Lemonte, 2013. "On the Marshall–Olkin extended Weibull distribution," Statistical Papers, Springer, vol. 54(2), pages 333-353, May.
    9. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    10. Hadeel S Klakattawi, 2022. "Survival analysis of cancer patients using a new extended Weibull distribution," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    11. Saralees Nadarajah & Božidar Popović & Miroslav Ristić, 2013. "Compounding: an R package for computing continuous distributions obtained by compounding a continuous and a discrete distribution," Computational Statistics, Springer, vol. 28(3), pages 977-992, June.
    12. Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
    13. Hadi Saboori & Ghobad Barmalzan & Seyyed Masih Ayat, 2020. "Generalized Modified Inverse Weibull Distribution: Its Properties and Applications," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 247-269, November.
    14. Gauss M. Cordeiro & Giovana O. Silva & Edwin M. M. Ortega, 2016. "An extended-G geometric family," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-16, December.
    15. Bebbington, Mark & Lai, Chin-Diew & Zitikis, RiÄ ardas, 2009. "Balancing burn-in and mission times in environments with catastrophic and repairable failures," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1314-1321.
    16. Hadeel Klakattawi & Dawlah Alsulami & Mervat Abd Elaal & Sanku Dey & Lamya Baharith, 2022. "A new generalized family of distributions based on combining Marshal-Olkin transformation with T-X family," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-29, February.
    17. Gupta, Ashutosh & Mukherjee, Bhaswati & Upadhyay, S.K., 2008. "Weibull extension model: A Bayes study using Markov chain Monte Carlo simulation," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1434-1443.
    18. Zubair Ahmad, 2020. "The Zubair-G Family of Distributions: Properties and Applications," Annals of Data Science, Springer, vol. 7(2), pages 195-208, June.
    19. Yolanda M. Gómez & Diego I. Gallardo & Carolina Marchant & Luis Sánchez & Marcelo Bourguignon, 2023. "An In-Depth Review of the Weibull Model with a Focus on Various Parameterizations," Mathematics, MDPI, vol. 12(1), pages 1-19, December.
    20. Silva, Rodrigo B. & Bourguignon, Marcelo & Dias, Cícero R.B. & Cordeiro, Gauss M., 2013. "The compound class of extended Weibull power series distributions," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 352-367.
    21. Ibrahim Elbatal & Naif Alotaibi & Salem A. Alyami & Mohammed Elgarhy & Ahmed R. El-Saeed, 2022. "Bayesian and Non-Bayesian Estimation of the Nadaraj ah–Haghighi Distribution: Using Progressive Type-1 Censoring Scheme," Mathematics, MDPI, vol. 10(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aodasc:v:8:y:2021:i:4:d:10.1007_s40745-019-00233-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.