IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i11p2046-d1277762.html
   My bibliography  Save this article

Application of Unconventional Tillage Systems to Maize Cultivation and Measures for Rational Use of Agricultural Lands

Author

Listed:
  • Felicia Chețan

    (Agricultural Research and Development Station Turda, Agriculturii Street 27, 401100 Turda, Romania)

  • Teodor Rusu

    (Department of Technical and Soil Sciences, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăstur Street 3–5, 400372 Cluj-Napoca, Romania)

  • Cornel Chețan

    (Agricultural Research and Development Station Turda, Agriculturii Street 27, 401100 Turda, Romania)

  • Alina Șimon

    (Agricultural Research and Development Station Turda, Agriculturii Street 27, 401100 Turda, Romania)

  • Ana-Maria Vălean

    (Agricultural Research and Development Station Turda, Agriculturii Street 27, 401100 Turda, Romania)

  • Adrian Ovidiu Ceclan

    (Agricultural Research and Development Station Turda, Agriculturii Street 27, 401100 Turda, Romania)

  • Marius Bărdaș

    (Agricultural Research and Development Station Turda, Agriculturii Street 27, 401100 Turda, Romania)

  • Adina Tărău

    (Agricultural Research and Development Station Turda, Agriculturii Street 27, 401100 Turda, Romania)

Abstract

Maize ( Zea mays L.) is one of the main agricultural crops grown worldwide under very diverse climate and soil conditions. For maize cultivation in a conventional tillage system, autumn plowing is a mandatory condition. Minimum soil tillage or no tillage has been applied in recent years, both in research and in production, for reasons relating to soil conservation and fuel economy. This paper presents the results of the research executed under pedoclimatic conditions at the Agricultural Research and Development Station Turda (ARDS Turda, Romania; chernozem soil) regarding the behavior of the maize hybrid Turda 332 cultivated in four tillage systems and two levels of fertilization during the period of 2016–2022. The following soil tillage systems were applied: a conventional tillage system (CT) and unconventional tillage systems in three variants—a minimum tillage system with a chisel (MTC), a minimum tillage system with a disk (MTD), and a no-tillage system (NT). They were applied with two levels of fertilization: basic fertilization (350 kg ha −1 NPK 16:16:16, applied at sowing) and optimized fertilization (350 kg ha −1 NPK 16:16:16 applied at sowing + 150 kg ha −1 calcium ammonium nitrate with additional fertilization in the phenophase of the maize with 6–7 leaves). The results highlight the fact that under the conditions of chernozem soils with a high clay content (41% clay content), maize does not lend itself to cultivation in MTD and NT, requiring deeper mobilization, with the yield data confirming this fact. This is because under the agrotechnical conditions for sowing carried out in MTD and NT, the seeder used (Maschio Gaspardo MT 6R) does not allow for the high-quality sowing of maize, especially under dry soil conditions. Instead, the MTC system could be an alternative to the conventional tillage system, with the yield difference being below 100 kg ha −1 .

Suggested Citation

  • Felicia Chețan & Teodor Rusu & Cornel Chețan & Alina Șimon & Ana-Maria Vălean & Adrian Ovidiu Ceclan & Marius Bărdaș & Adina Tărău, 2023. "Application of Unconventional Tillage Systems to Maize Cultivation and Measures for Rational Use of Agricultural Lands," Land, MDPI, vol. 12(11), pages 1-15, November.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:11:p:2046-:d:1277762
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/11/2046/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/11/2046/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Menale Kassie & John Pender & Mahmud Yesuf & Gunnar Kohlin & Randy Bluffstone & Elias Mulugeta, 2008. "Estimating returns to soil conservation adoption in the northern Ethiopian highlands," Agricultural Economics, International Association of Agricultural Economists, vol. 38(2), pages 213-232, March.
    2. Li, Xiang & Takahashi, Taro & Suzuki, Nobuhiro & Kaiser, Harry M., 2011. "The impact of climate change on maize yields in the United States and China," Agricultural Systems, Elsevier, vol. 104(4), pages 348-353, April.
    3. Felicia Cheţan & Teodor Rusu & Roxana Elena Călugăr & Cornel Chețan & Alina Şimon & Adrian Ceclan & Marius Bărdaș & Olimpia Smaranda Mintaș, 2022. "Research on the Interdependence Linkages between Soil Tillage Systems and Climate Factors on Maize Crop," Land, MDPI, vol. 11(10), pages 1-14, October.
    4. Zoltán Bakucs & Imre Fertő & Enikő Vígh, 2020. "Crop Productivity and Climatic Conditions: Evidence from Hungary," Agriculture, MDPI, vol. 10(9), pages 1-12, September.
    5. Felicia Chețan & Cornel Chețan & Ileana Bogdan & Paula Ioana Moraru & Adrian Ioan Pop & Teodor Rusu, 2022. "Use of Vegetable Residues and Cover Crops in the Cultivation of Maize Grown in Different Tillage Systems," Sustainability, MDPI, vol. 14(6), pages 1-14, March.
    6. David Tilman & Kenneth G. Cassman & Pamela A. Matson & Rosamond Naylor & Stephen Polasky, 2002. "Agricultural sustainability and intensive production practices," Nature, Nature, vol. 418(6898), pages 671-677, August.
    7. Mihai Rusu & Mihaela Mihai & Valentin C. Mihai & Lavinia Moldovan & Ovidiu Adrian Ceclan & Constantin Toader, 2023. "Areas of Agrochemical Deepening Resulting from Long-Term Experiments with Fertilizers—Synthesis Following 20 Years of Annual and Stationary Fertilization," Agriculture, MDPI, vol. 13(8), pages 1-17, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Solomon Asfaw & Nancy McCarthy & Leslie Lipper & Aslihan Arslan & Andrea Cattaneo, 2016. "What determines farmers’ adaptive capacity? Empirical evidence from Malawi," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(3), pages 643-664, June.
    2. Elisa Morri & Riccardo Santolini, 2021. "Ecosystem Services Valuation for the Sustainable Land Use Management by Nature-Based Solution (NbS) in the Common Agricultural Policy Actions: A Case Study on the Foglia River Basin (Marche Region, It," Land, MDPI, vol. 11(1), pages 1-23, December.
    3. Fetene, G.M. & Getehun, T.D., 2018. "Agricultural Technology Adoption for Food and Nutrition Security: Evidence from Ethiopia," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277332, International Association of Agricultural Economists.
    4. Liu, Duan & Tang, Runcheng & Xie, Jun & Tian, Jingjing & Shi, Rui & Zhang, Kai, 2020. "Valuation of ecosystem services of rice–fish coculture systems in Ruyuan County, China," Ecosystem Services, Elsevier, vol. 41(C).
    5. Manda, Julius & Feleke, Shiferaw & Mutungi, Christopher & Tufa, Adane H. & Mateete, Bekunda & Abdoulaye, Tahirou & Alene, Arega D., 2024. "Assessing the speed of improved postharvest technology adoption in Tanzania: The role of social learning and agricultural extension services," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    6. Veronika Fenyves & Tibor Tarnóczi & Zoltán Bács & Dóra Kerezsi & Péter Bajnai & Mihály Szoboszlai, 2022. "Financial efficiency analysis of Hungarian agriculture, fisheries and forestry sector," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 68(11), pages 413-426.
    7. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    8. Katarina Arvidsson Segerkvist & Helena Hansson & Ulf Sonesson & Stefan Gunnarsson, 2021. "A Systematic Mapping of Current Literature on Sustainability at Farm-Level in Beef and Lamb Meat Production," Sustainability, MDPI, vol. 13(5), pages 1-14, February.
    9. Vainio, Annukka & Tienhaara, Annika & Haltia, Emmi & Hyvönen, Terho & Pyysiäinen, Jarkko & Pouta, Eija, 2021. "The legitimacy of result-oriented and action-oriented agri-environmental schemes: A comparison of farmers’ and citizens’ perceptions," Land Use Policy, Elsevier, vol. 107(C).
    10. Hualin Xie & Yingqian Huang & Qianru Chen & Yanwei Zhang & Qing Wu, 2019. "Prospects for Agricultural Sustainable Intensification: A Review of Research," Land, MDPI, vol. 8(11), pages 1-27, October.
    11. Smith, Helen F. & Sullivan, Caroline A., 2014. "Ecosystem services within agricultural landscapes—Farmers' perceptions," Ecological Economics, Elsevier, vol. 98(C), pages 72-80.
    12. Aude Ridier & Caroline Roussy & Karim Chaib, 2021. "Adoption of crop diversification by specialized grain farmers in south-western France: evidence from a choice-modelling experiment," Review of Agricultural, Food and Environmental Studies, Springer, vol. 102(3), pages 265-283, September.
    13. Wenjin Hu & Xinli Pan & Fengfeng Li & Wubei Dong, 2018. "UPLC-QTOF-MS metabolomics analysis revealed the contributions of metabolites to the pathogenesis of Rhizoctonia solani strain AG-1-IA," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-17, February.
    14. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    15. Diriba Shiferaw G., 2017. "Water-Nutrients Interaction: Exploring the Effects of Water as a Central Role for Availability & Use Efficiency of Nutrients by Shallow Rooted Vegetable Crops - A Review," Journal of Agriculture and Crops, Academic Research Publishing Group, vol. 3(10), pages 78-93, 10-2017.
    16. Sheng Gong & Jason.S. Bergtold & Elizabeth Yeager, 2021. "Assessing the joint adoption and complementarity between in-field conservation practices of Kansas farmers," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 9(1), pages 1-24, December.
    17. Seufert, Verena & Ramankutty, Navin & Mayerhofer, Tabea, 2017. "What is this thing called organic? – How organic farming is codified in regulations," Food Policy, Elsevier, vol. 68(C), pages 10-20.
    18. Yonas Alem & Mintewab Bezabih & Menale Kassie & Precious Zikhali, 2010. "Does fertilizer use respond to rainfall variability? Panel data evidence from Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 41(2), pages 165-175, March.
    19. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    20. Kataki, Sampriti & West, Helen & Clarke, Michèle & Baruah, D.C., 2016. "Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 142-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:11:p:2046-:d:1277762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.