IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i10p1731-d934828.html
   My bibliography  Save this article

Research on the Interdependence Linkages between Soil Tillage Systems and Climate Factors on Maize Crop

Author

Listed:
  • Felicia Cheţan

    (Agricultural Research and Development Station Turda, Agriculturii Street 27, 401100 Turda, Romania)

  • Teodor Rusu

    (Department of Technical and Soil Sciences, Faculty of Agriculture, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, Mănăstur Street 3-5, 400372 Cluj-Napoca, Romania)

  • Roxana Elena Călugăr

    (Agricultural Research and Development Station Turda, Agriculturii Street 27, 401100 Turda, Romania)

  • Cornel Chețan

    (Agricultural Research and Development Station Turda, Agriculturii Street 27, 401100 Turda, Romania)

  • Alina Şimon

    (Agricultural Research and Development Station Turda, Agriculturii Street 27, 401100 Turda, Romania)

  • Adrian Ceclan

    (Agricultural Research and Development Station Turda, Agriculturii Street 27, 401100 Turda, Romania)

  • Marius Bărdaș

    (Agricultural Research and Development Station Turda, Agriculturii Street 27, 401100 Turda, Romania)

  • Olimpia Smaranda Mintaș

    (Faculty of Environmental Protection, University of Oradea, General Magheru Street 26, 410087 Oradea, Romania)

Abstract

The experimental zone of the Transylvanian Plain is characterized by some particular problems for the maize crop due to an oscillating thermal regime; relatively shorter frost-free interval; climatic diversity; mixed relief; and soils with different peculiarities, even from one plot to another. This paper presents the results of research conducted during 2016–2021 regarding the influence of four soil tillage system and two fertilizer doses on emergences and maize yield, in the pedoclimatic conditions of the hilly area of the Transylvanian Plain. In all experimental years, a faster maize emergence was observed in the conventional-plow and minimum tillage—chisel compared to minimum tillage-disk and no-tillage. In a conventional system (control), the yield achieved (7603 kg ha −1 ) was close to the minimum tillage—chisel system (7529 kg ha −1 ), and higher than the minimum tillage-disk (6391 kg ha −1 ) and no-tillage (5178 kg ha −1 ). The beneficial effect of additional fertilization with CAN 27 (granular nitrogen fertilizer containing magnesium and calcium from dolomite) is found in a better development of plants and on the increase of yield with 356 kg ha −1 compared to the variant with basic fertilization. The yield difference between the two hybrids included in the experiment is insignificant (under 100 kg ha −1 ).

Suggested Citation

  • Felicia Cheţan & Teodor Rusu & Roxana Elena Călugăr & Cornel Chețan & Alina Şimon & Adrian Ceclan & Marius Bărdaș & Olimpia Smaranda Mintaș, 2022. "Research on the Interdependence Linkages between Soil Tillage Systems and Climate Factors on Maize Crop," Land, MDPI, vol. 11(10), pages 1-14, October.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1731-:d:934828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/10/1731/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/10/1731/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcos Apesteguía & Iñigo Virto & Luis Orcaray & Paloma Bescansa & Alberto Enrique & María José Imaz & Douglas L. Karlen, 2017. "Tillage Effects on Soil Quality after Three Years of Irrigation in Northern Spain," Sustainability, MDPI, vol. 9(8), pages 1-20, August.
    2. Roman Rolbiecki & Ali Yücel & Joanna Kocięcka & Atılgan Atilgan & Monika Marković & Daniel Liberacki, 2022. "Analysis of SPI as a Drought Indicator during the Maize Growing Period in the Çukurova Region (Turkey)," Sustainability, MDPI, vol. 14(6), pages 1-29, March.
    3. Bhim Bahadur Ghaley & Teodor Rusu & Taru Sandén & Heide Spiegel & Cristina Menta & Giovanna Visioli & Lilian O’Sullivan & Isabelle Trinsoutrot Gattin & Antonio Delgado & Mark A. Liebig & Dirk Vrebos &, 2018. "Assessment of Benefits of Conservation Agriculture on Soil Functions in Arable Production Systems in Europe," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    4. Pavel Krasilnikov & Miguel Angel Taboada & Amanullah, 2022. "Fertilizer Use, Soil Health and Agricultural Sustainability," Agriculture, MDPI, vol. 12(4), pages 1-5, March.
    5. Brian Sims & Josef Kienzle, 2017. "Sustainable Agricultural Mechanization for Smallholders: What Is It and How Can We Implement It?," Agriculture, MDPI, vol. 7(6), pages 1-21, June.
    6. Peipei Yang & Wenxu Dong & Marius Heinen & Wei Qin & Oene Oenema, 2022. "Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis," Land, MDPI, vol. 11(5), pages 1-18, April.
    7. Tugrul Yakupoglu & Recep Gundogan & Turgay Dindaroglu & Kadir Kusvuran & Veysel Gokmen & Jesus Rodrigo-Comino & Yeboah Gyasi-Agyei & Artemi Cerdà, 2021. "Tillage Impacts on Initial Soil Erosion in Wheat and Sainfoin Fields under Simulated Extreme Rainfall Treatments," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    8. Roberto Fanigliulo & Daniele Pochi & Pieranna Servadio, 2021. "Conventional and Conservation Seedbed Preparation Systems for Wheat Planting in Silty-Clay Soil," Sustainability, MDPI, vol. 13(11), pages 1-19, June.
    9. Taghi Bararpour & Nicholas E. Korres, 2018. "Effect of Simulated Tillage in Combination with Post-Shattering Temperature Conditions on Senna obtusifolia and Xanthium strumarium Seed Survival, Seedling Emergence and Seedbank Potential," Agriculture, MDPI, vol. 8(4), pages 1-10, April.
    10. Marianne E. Bechmann & Frederik Bøe, 2021. "Soil Tillage and Crop Growth Effects on Surface and Subsurface Runoff, Loss of Soil, Phosphorus and Nitrogen in a Cold Climate," Land, MDPI, vol. 10(1), pages 1-15, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felicia Chețan & Teodor Rusu & Cornel Chețan & Alina Șimon & Ana-Maria Vălean & Adrian Ovidiu Ceclan & Marius Bărdaș & Adina Tărău, 2023. "Application of Unconventional Tillage Systems to Maize Cultivation and Measures for Rational Use of Agricultural Lands," Land, MDPI, vol. 12(11), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felicia Cheţan & Teodor Rusu & Cornel Cheţan & Camelia Urdă & Raluca Rezi & Alina Şimon & Ileana Bogdan, 2022. "Influence of Soil Tillage Systems on the Yield and Weeds Infestation in the Soybean Crop," Land, MDPI, vol. 11(10), pages 1-13, October.
    2. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    3. Selorm Yaotse Dorvlo & Elizabeth Mkandawire & Katy Roelich & Charles Blessings Jumbe, 2023. "Pathways and Interactions for Integrating Mechanisation into Sustainable Agricultural Production: The Case of Rice Production in Asutsuare, Ghana," Sustainability, MDPI, vol. 15(22), pages 1-17, November.
    4. Monika Vilkiene & Ieva Mockeviciene & Grazina Kadziene & Danute Karcauskiene & Regina Repsiene & Ona Auskalniene, 2023. "Bacterial Communities: Interaction to Abiotic Conditions under Effect of Anthropogenic Pressure," Sustainability, MDPI, vol. 15(14), pages 1-15, July.
    5. Xuelan Li & Rui Guan, 2023. "How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China?," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    6. Coronese, Matteo & Occelli, Martina & Lamperti, Francesco & Roventini, Andrea, 2023. "AgriLOVE: Agriculture, land-use and technical change in an evolutionary, agent-based model," Ecological Economics, Elsevier, vol. 208(C).
    7. Katharina Helming & Katrin Daedlow & Bernd Hansjürgens & Thomas Koellner, 2018. "Assessment and Governance of Sustainable Soil Management," Sustainability, MDPI, vol. 10(12), pages 1-13, November.
    8. Tshering Choden & Bhim Bahadur Ghaley, 2021. "A Portfolio of Effective Water and Soil Conservation Practices for Arable Production Systems in Europe and North Africa," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
    9. Xin Deng & Zhongcheng Yan & Dingde Xu & Yanbin Qi, 2020. "Land Registration, Adjustment Experience, and Agricultural Machinery Adoption: Empirical Analysis from Rural China," Land, MDPI, vol. 9(3), pages 1-14, March.
    10. Sulav Paudel & Lalit P. Sah & Mukti Devkota & Vijaya Poudyal & P.V. Vara Prasad & Manuel R. Reyes, 2020. "Conservation Agriculture and Integrated Pest Management Practices Improve Yield and Income while Reducing Labor, Pests, Diseases and Chemical Pesticide Use in Smallholder Vegetable Farms in Nepal," Sustainability, MDPI, vol. 12(16), pages 1-16, August.
    11. Maurice Osewe & Chris Miyinzi Mwungu & Aijun Liu, 2020. "Does Minimum Tillage Improve Smallholder Farmers’ Welfare? Evidence from Southern Tanzania," Land, MDPI, vol. 9(12), pages 1-12, December.
    12. Felicia Chețan & Cornel Chețan & Ileana Bogdan & Adrian Ioan Pop & Paula Ioana Moraru & Teodor Rusu, 2021. "The Effects of Management (Tillage, Fertilization, Plant Density) on Soybean Yield and Quality in a Three-Year Experiment under Transylvanian Plain Climate Conditions," Land, MDPI, vol. 10(2), pages 1-13, February.
    13. Xi Yu & Xiyang Yin & Yuying Liu & Dongmei Li, 2021. "Do Agricultural Machinery Services Facilitate Land Transfer? Evidence from Rice Farmers in Sichuan Province, China," Land, MDPI, vol. 10(5), pages 1-14, April.
    14. Dilayda Soylu Pekpostalci & Rifat Tur & Ali Danandeh Mehr & Mohammad Amin Vazifekhah Ghaffari & Dominika Dąbrowska & Vahid Nourani, 2023. "Drought Monitoring and Forecasting across Turkey: A Contemporary Review," Sustainability, MDPI, vol. 15(7), pages 1-23, March.
    15. Avinash Gupta, 2018. "Mechanization in Nepalese agriculture : Potential knowledge gaps and significance," Working Papers wp/18/03, South Asia Watch on Trade, Economics and Environment.
    16. Falchetta, Giacomo & Stevanato, Nicolò & Moner-Girona, Magda & Mazzoni, Davide & Colombo, Emanuela & Hafner, Manfred, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," FEP: Future Energy Program 305213, Fondazione Eni Enrico Mattei (FEEM) > FEP: Future Energy Program.
    17. Ana Simoes-Mota & Rosa Maria Poch & Alberto Enrique & Luis Orcaray & Iñigo Virto, 2021. "Soil Quality Assessment after 25 Years of Sewage Sludge vs. Mineral Fertilization in a Calcareous Soil," Land, MDPI, vol. 10(7), pages 1-20, July.
    18. Kirui, Oliver K. & von Braun, Joachim, 2018. "Mechanization in African Agriculture: A Continental Overview on Patterns and Dynamics," Working Papers 273522, University of Bonn, Center for Development Research (ZEF).
    19. Hamza Negiş, 2023. "Using Models and Artificial Neural Networks to Predict Soil Compaction Based on Textural Properties of Soils under Agriculture," Agriculture, MDPI, vol. 14(1), pages 1-14, December.
    20. Sahoo, Dukhabandhu & Behera, Jayanti & Biswas, Chandrima, 2023. "Determinants of use of Climate Smart Technology in Agriculture: Evidence from Household data," Agri-Tech Economics Papers 344215, Harper Adams University, Land, Farm & Agribusiness Management Department.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:10:p:1731-:d:934828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.