IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i8p1343-d891285.html
   My bibliography  Save this article

Effects of Urban Form on Carbon Emissions in China: Implications for Low-Carbon Urban Planning

Author

Listed:
  • Sheng Zheng

    (Department of Land Management, Zhejiang University, Hangzhou 310058, China
    Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources, Shenzhen 518034, China)

  • Yukuan Huang

    (Department of Land Management, Zhejiang University, Hangzhou 310058, China)

  • Yu Sun

    (Department of Land Management, Zhejiang University, Hangzhou 310058, China)

Abstract

Carbon emissions are closely related to global warming. More than 70% of global carbon emissions have been generated in cities. Many studies have analyzed the effects of cities on carbon emissions, from the perspective of urbanization, economics, and land use, yet a detailed understanding of the relationship between urban form and carbon emissions is lacking due to the absence of a reasonable set of urban form metrics. The aim of this research is to explore the effects of urban form on carbon emissions through empirical research. By eliminating collinearity, we established a set of urban form landscape metrics comprising Class Area (CA), Mean Perimeter–Area Ratio (PARA-MN), Mean Proximity Index (PROX-MN), and Mean Euclidian Nearest Neighbor Distance (ENN-MN) representing urban area, complexity, compactness, and centrality, respectively. Through spatial autocorrelation analysis, the results show that there is a positive spatial autocorrelation of carbon emissions. The high–high agglomeration regions are located in the Beijing–Tianjin–Hebei and Yangtze River Delta, while the low–low agglomeration regions are concentrated in the Southwest and Heilongjiang Province. Based on a spatial error model, for the whole study area, CA, PARA-MN, and ENN-MN show a positive correlation with carbon emissions, but PROX-MN is the opposite. Based on ordinary least squares, PARA-MN in the Northeast and East, PROX-MN in the North and Mid-South, and ENN-MN in the North are significantly correlated with carbon emissions. These findings are helpful for low-carbon urban planning.

Suggested Citation

  • Sheng Zheng & Yukuan Huang & Yu Sun, 2022. "Effects of Urban Form on Carbon Emissions in China: Implications for Low-Carbon Urban Planning," Land, MDPI, vol. 11(8), pages 1-17, August.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1343-:d:891285
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/8/1343/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/8/1343/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ding, Yang & Li, Feng, 2017. "Examining the effects of urbanization and industrialization on carbon dioxide emission: Evidence from China's provincial regions," Energy, Elsevier, vol. 125(C), pages 533-542.
    2. Wei Zhao & Xuan Liu & Qingxin Deng & Dongyang Li & Jianing Xu & Mengdi Li & Yaoping Cui, 2020. "Spatial Association of Urbanization in the Yangtze River Delta, China," IJERPH, MDPI, vol. 17(19), pages 1-17, October.
    3. Shuangshuang Liu & Qipeng Liao & Yuan Liang & Zhifei Li & Chunbo Huang, 2021. "Spatio–Temporal Heterogeneity of Urban Expansion and Population Growth in China," IJERPH, MDPI, vol. 18(24), pages 1-26, December.
    4. Decai Tang & Yan Zhang & Brandon J Bethel, 2020. "A Comprehensive Evaluation of Carbon Emission Reduction Capability in the Yangtze River Economic Belt," IJERPH, MDPI, vol. 17(2), pages 1-16, January.
    5. Chao Liu & Yuan Liang & Yajin Zhao & Shuangshuang Liu & Chunbo Huang, 2021. "Simulation and Analysis of the Effects of Land Use and Climate Change on Carbon Dynamics in the Wuhan City Circle Area," IJERPH, MDPI, vol. 18(21), pages 1-18, November.
    6. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    7. Zhifu Mi & Jing Meng & Dabo Guan & Yuli Shan & Malin Song & Yi-Ming Wei & Zhu Liu & Klaus Hubacek, 2017. "Chinese CO2 emission flows have reversed since the global financial crisis," Nature Communications, Nature, vol. 8(1), pages 1-10, December.
    8. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    9. Feng Dong & Yue Wang & Xiaojie Zhang, 2018. "Can Environmental Quality Improvement and Emission Reduction Targets Be Realized Simultaneously? Evidence from China and A Geographically and Temporally Weighted Regression Model," IJERPH, MDPI, vol. 15(11), pages 1-22, October.
    10. Cheng Huang & Yang Qu & Lingfang Huang & Xing Meng & Yulong Chen & Ping Pan, 2022. "Quantifying the Impact of Urban Form and Socio-Economic Development on China’s Carbon Emissions," IJERPH, MDPI, vol. 19(5), pages 1-14, March.
    11. Xinhua Tong & Shurui Guo & Haiyan Duan & Zhiyuan Duan & Chang Gao & Wu Chen, 2022. "Carbon-Emission Characteristics and Influencing Factors in Growing and Shrinking Cities: Evidence from 280 Chinese Cities," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    12. Cai, Bofeng & Zhang, Lixiao, 2014. "Urban CO2 emissions in China: Spatial boundary and performance comparison," Energy Policy, Elsevier, vol. 66(C), pages 557-567.
    13. Chen Li & Heng Li & Xionghe Qin, 2022. "Spatial Heterogeneity of Carbon Emissions and Its Influencing Factors in China: Evidence from 286 Prefecture-Level Cities," IJERPH, MDPI, vol. 19(3), pages 1-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yao Xu & Liang Sun & Bo Wang & Shanmin Ding & Xichen Ge & Shuangrong Cai, 2023. "Research on the Impact of Carbon Emissions and Spatial Form of Town Construction Land: A Study of Macheng, China," Land, MDPI, vol. 12(7), pages 1-23, July.
    2. Victor Gonzalez & Manuel Peralta & Juan Faxas-Guzmán & Yokasta García Frómeta, 2022. "Real-Time Environmental Monitoring Platform for Wellness and Preventive Care in a Smart and Sustainable City with an Urban Landscape Perspective: The Case of Developing Countries," Land, MDPI, vol. 11(10), pages 1-19, September.
    3. Taehyun Kim & Youngre Noh, 2024. "Planning factors affecting carbon footprints of residents: Density, land use, and suburbanization," Environment and Planning B, , vol. 51(1), pages 157-173, January.
    4. Xiaoyue Zeng & Deliang Fan & Yunfei Zheng & Shijie Li, 2024. "Exploring the Differentiated Impact of Urban Spatial Form on Carbon Emissions: Evidence from Chinese Cities," Land, MDPI, vol. 13(6), pages 1-19, June.
    5. Yanming Sun & Baozhong Chen & Qingli Li, 2024. "Impact of Urban Form in the Yangtze River Delta of China on the Spatiotemporal Evolution of Carbon Emissions from Transportation," Sustainability, MDPI, vol. 16(22), pages 1-16, November.
    6. Yuxin Liu & Chenjing Fan & Dongdong Xue, 2024. "A Review of the Effects of Urban and Green Space Forms on the Carbon Budget Using a Landscape Sustainability Framework," Sustainability, MDPI, vol. 16(5), pages 1-29, February.
    7. Fengying Yan & Xinran Qi, 2024. "Application and Prospect of Artificial Intelligence Technology in Low-Carbon Cities—From the Perspective of Urban Planning Content and Process," Land, MDPI, vol. 13(11), pages 1-21, November.
    8. Haiyan Lei & Suiping Zeng & Aihemaiti Namaiti & Jian Zeng, 2023. "The Impacts of Road Traffic on Urban Carbon Emissions and the Corresponding Planning Strategies," Land, MDPI, vol. 12(4), pages 1-20, March.
    9. Lihan Cui & Wenwen Tang & Sheng Zheng & Ramesh P. Singh, 2022. "Ecological Protection Alone Is Not Enough to Conserve Ecosystem Carbon Storage: Evidence from Guangdong, China," Land, MDPI, vol. 12(1), pages 1-16, December.
    10. Li Li & Zhichao Chen & Shidong Wang, 2022. "Optimization of Spatial Land Use Patterns with Low Carbon Target: A Case Study of Sanmenxia, China," IJERPH, MDPI, vol. 19(21), pages 1-22, October.
    11. Xiaolei Huang & Jinpei Ou & Yingjian Huang & Shun Gao, 2023. "Exploring the Effects of Socioeconomic Factors and Urban Forms on CO 2 Emissions in Shrinking and Growing Cities," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    12. Chengye Jia & Shuang Feng & Hong Chu & Weige Huang, 2023. "The Heterogeneous Effects of Urban Form on CO 2 Emissions: An Empirical Analysis of 255 Cities in China," Land, MDPI, vol. 12(5), pages 1-24, April.
    13. Yamei Chen & Chao Zhang, 2024. "Characteristics of Spatial–Temporal Evolution of Carbon Emissions from Land Use and Analysis of Influencing Factors in Hubao-Eyu Urban Agglomerations, China," Sustainability, MDPI, vol. 16(17), pages 1-25, September.
    14. Xiaoxu, Xing & Qiangmin, Xi & Weihao, Shi, 2024. "Impact of urban compactness on carbon emission in Chinese cities: From moderating effects of industrial diversity and job-housing imbalances," Land Use Policy, Elsevier, vol. 143(C).
    15. Jian Zhang & Jingyang Liu & Li Dong & Qi Qiao, 2022. "CO 2 Emissions Inventory and Its Uncertainty Analysis of China’s Industrial Parks: A Case Study of the Maanshan Economic and Technological Development Area," IJERPH, MDPI, vol. 19(18), pages 1-14, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhonghua Cheng & Xiaowen Hu, 2023. "The effects of urbanization and urban sprawl on CO2 emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1792-1808, February.
    2. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    3. Bakirtas, Tahsin & Akpolat, Ahmet Gokce, 2018. "The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries," Energy, Elsevier, vol. 147(C), pages 110-121.
    4. Li, Jia Shuo & Zhou, H.W. & Meng, Jing & Yang, Q. & Chen, B. & Zhang, Y.Y., 2018. "Carbon emissions and their drivers for a typical urban economy from multiple perspectives: A case analysis for Beijing city," Applied Energy, Elsevier, vol. 226(C), pages 1076-1086.
    5. Xiaolei Huang & Jinpei Ou & Yingjian Huang & Shun Gao, 2023. "Exploring the Effects of Socioeconomic Factors and Urban Forms on CO 2 Emissions in Shrinking and Growing Cities," Sustainability, MDPI, vol. 16(1), pages 1-20, December.
    6. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    7. Yuxin Liu & Chenjing Fan & Dongdong Xue, 2024. "A Review of the Effects of Urban and Green Space Forms on the Carbon Budget Using a Landscape Sustainability Framework," Sustainability, MDPI, vol. 16(5), pages 1-29, February.
    8. Ze Liang & Yueyao Wang & Jiao Huang & Feili Wei & Shuyao Wu & Jiashu Shen & Fuyue Sun & Shuangcheng Li, 2020. "Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect," Energies, MDPI, vol. 13(22), pages 1-19, November.
    9. Lin Ma & Yueyao Wang & Ze Liang & Jiaqi Ding & Jiashu Shen & Feili Wei & Shuangcheng Li, 2021. "Changing Effect of Urban Form on the Seasonal and Diurnal Variations of Surface Urban Heat Island Intensities (SUHIIs) in More Than 3000 Cities in China," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    10. Changlong Sun & Yongli Zhang & Wenwen Ma & Rong Wu & Shaojian Wang, 2022. "The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review," Land, MDPI, vol. 11(9), pages 1-20, August.
    11. Li Wang & Jie Pei & Jing Geng & Zheng Niu, 2019. "Tracking the Spatial–Temporal Evolution of Carbon Emissions in China from 1999 to 2015: A Land Use Perspective," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    12. Proque, Andressa Lemes & dos Santos, Gervásio Ferreira & Betarelli Junior, Admir Antonio & Larson, William D., 2020. "Effects of land use and transportation policies on the spatial distribution of urban energy consumption in Brazil," Energy Economics, Elsevier, vol. 90(C).
    13. Hongjiang Liu & Fengying Yan & Hua Tian, 2020. "A Vector Map of Carbon Emission Based on Point-Line-Area Carbon Emission Classified Allocation Method," Sustainability, MDPI, vol. 12(23), pages 1-21, December.
    14. Shi, Kaifang & Chen, Yun & Li, Linyi & Huang, Chang, 2018. "Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective," Applied Energy, Elsevier, vol. 211(C), pages 218-229.
    15. Sina Narimani Abar & Martin Schulwitz & Martin Faulstich, 2023. "The Impact of Urban Form and Density on Residential Energy Use: A Systematic Review," Sustainability, MDPI, vol. 15(22), pages 1-22, November.
    16. Hui Wang & Guifen Liu & Kaifang Shi, 2019. "What Are the Driving Forces of Urban CO 2 Emissions in China? A Refined Scale Analysis between National and Urban Agglomeration Levels," IJERPH, MDPI, vol. 16(19), pages 1-19, September.
    17. Liya Yang & Honghui Zhang & Xinqi Liao & Haiqi Wang & Yong Bian & Geng Liu & Weiling Luo, 2023. "The Relationship between Spatial Characteristics of Urban-Rural Settlements and Carbon Emissions in Guangdong Province," IJERPH, MDPI, vol. 20(3), pages 1-22, February.
    18. Xu, Chao & Haase, Dagmar & Su, Meirong & Yang, Zhifeng, 2019. "The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness," Applied Energy, Elsevier, vol. 254(C).
    19. Thomas W. Crawford, 2020. "Urban Form as a Technological Driver of Carbon Dioxide Emission: A Structural Human Ecology Analysis of Onroad and Residential Sectors in the Conterminous U.S," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    20. Schlör, Holger & Venghaus, Sandra & Hake, Jürgen-Friedrich, 2018. "The FEW-Nexus city index – Measuring urban resilience," Applied Energy, Elsevier, vol. 210(C), pages 382-392.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:8:p:1343-:d:891285. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.