IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i6p874-d1416797.html
   My bibliography  Save this article

Exploring the Differentiated Impact of Urban Spatial Form on Carbon Emissions: Evidence from Chinese Cities

Author

Listed:
  • Xiaoyue Zeng

    (School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou 510090, China
    Landscape Planning and Ecological Restoration Research Center, Guangdong University of Technology, Guangzhou 510090, China)

  • Deliang Fan

    (Guangzhou Urban Planning & Design Survey Research Institute Co., Ltd., Guangzhou 510060, China)

  • Yunfei Zheng

    (School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou 510090, China
    Landscape Planning and Ecological Restoration Research Center, Guangdong University of Technology, Guangzhou 510090, China)

  • Shijie Li

    (School of Architecture and Urban Planning, Guangdong University of Technology, Guangzhou 510090, China
    Landscape Planning and Ecological Restoration Research Center, Guangdong University of Technology, Guangzhou 510090, China)

Abstract

The role of spatial factors in reducing carbon emissions has been receiving increasing attention from researchers; however, these impacts may involve spatial heterogeneity. In this study, 337 prefecture-level cities in China were taken as the research object. Based on national-level urban data, the global impact of urban spatial form on carbon emissions was then investigated using ordinary least squares regression, the spatial error model, and the spatial lag model. The local effects of urban spatial form on carbon emissions in different cities were then investigated using geographically weighted regression. The findings are as follows. Overall, the larger the urban built-up area and the more fragmented and decentralized the urban land use, the greater the carbon emissions. Conversely, the more centralized the urban center of a city, the lower its carbon emissions. Locally, for some Chinese cities, the total area, landscape shape index, and mean Euclidean nearest-neighbor distance were found to have significant positive effects on carbon emissions, while the largest-patch index had a significant negative impact. For all Chinese cities, the patch density was found to have no significant effect on carbon emissions. In 29% of the cities in which the landscape division index was found to significantly affect carbon emissions, this effect was positive, while it was negative in the remaining 71%. The policy implications emerging from this study lie in the need for decision-makers and urban planners to guide the shaping of low-carbon urban spatial forms.

Suggested Citation

  • Xiaoyue Zeng & Deliang Fan & Yunfei Zheng & Shijie Li, 2024. "Exploring the Differentiated Impact of Urban Spatial Form on Carbon Emissions: Evidence from Chinese Cities," Land, MDPI, vol. 13(6), pages 1-19, June.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:874-:d:1416797
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/6/874/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/6/874/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chengye Jia & Shuang Feng & Hong Chu & Weige Huang, 2023. "The Heterogeneous Effects of Urban Form on CO 2 Emissions: An Empirical Analysis of 255 Cities in China," Land, MDPI, vol. 12(5), pages 1-24, April.
    2. Riccardo Privitera & Valentina Palermo & Francesco Martinico & Alberto Fichera & Daniele La Rosa, 2018. "Towards lower carbon cities: urban morphology contribution in climate change adaptation strategies," European Planning Studies, Taylor & Francis Journals, vol. 26(4), pages 812-837, April.
    3. Liu, Xiaochen & Sweeney, John, 2012. "Modelling the impact of urban form on household energy demand and related CO2 emissions in the Greater Dublin Region," Energy Policy, Elsevier, vol. 46(C), pages 359-369.
    4. Liddle, Brantley, 2013. "Urban density and climate change: a STIRPAT analysis using city-level data," Journal of Transport Geography, Elsevier, vol. 28(C), pages 22-29.
    5. Yin, Yanhong & Mizokami, Shoshi & Aikawa, Kohei, 2015. "Compact development and energy consumption: Scenario analysis of urban structures based on behavior simulation," Applied Energy, Elsevier, vol. 159(C), pages 449-457.
    6. Muñiz, Ivan & Sánchez, Vania, 2018. "Urban Spatial Form and Structure and Greenhouse-gas Emissions From Commuting in the Metropolitan Zone of Mexico Valley," Ecological Economics, Elsevier, vol. 147(C), pages 353-364.
    7. Gaigné, Carl & Riou, Stéphane & Thisse, Jacques-François, 2012. "Are compact cities environmentally friendly?," Journal of Urban Economics, Elsevier, vol. 72(2), pages 123-136.
    8. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    9. Camagni, Roberto & Gibelli, Maria Cristina & Rigamonti, Paolo, 2002. "Urban mobility and urban form: the social and environmental costs of different patterns of urban expansion," Ecological Economics, Elsevier, vol. 40(2), pages 199-216, February.
    10. Andrea Cirilli & Paolo Veneri, 2014. "Spatial Structure and Carbon Dioxide (CO 2 ) Emissions Due to Commuting: An Analysis of Italian Urban Areas," Regional Studies, Taylor & Francis Journals, vol. 48(12), pages 1993-2005, December.
    11. Carl Gaigné & Stéphane Riou & Jacques-François Thisse, 2012. "Are Compact Cities Environmentally (and Socially) Desirable ?," Cahiers de recherche CREATE 2012-4, CREATE.
    12. Paolo Veneri, 2010. "Urban Polycentricity and the Costs of Commuting: Evidence from Italian Metropolitan Areas," Growth and Change, Wiley Blackwell, vol. 41(3), pages 403-429, September.
    13. Sheng Zheng & Yukuan Huang & Yu Sun, 2022. "Effects of Urban Form on Carbon Emissions in China: Implications for Low-Carbon Urban Planning," Land, MDPI, vol. 11(8), pages 1-17, August.
    14. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxin Liu & Chenjing Fan & Dongdong Xue, 2024. "A Review of the Effects of Urban and Green Space Forms on the Carbon Budget Using a Landscape Sustainability Framework," Sustainability, MDPI, vol. 16(5), pages 1-29, February.
    2. Xiaoxu, Xing & Qiangmin, Xi & Weihao, Shi, 2024. "Impact of urban compactness on carbon emission in Chinese cities: From moderating effects of industrial diversity and job-housing imbalances," Land Use Policy, Elsevier, vol. 143(C).
    3. Ivan Muñiz & Andrés Dominguez, 2020. "The Impact of Urban Form and Spatial Structure on per Capita Carbon Footprint in U.S. Larger Metropolitan Areas," Sustainability, MDPI, vol. 12(1), pages 1-19, January.
    4. Changlong Sun & Yongli Zhang & Wenwen Ma & Rong Wu & Shaojian Wang, 2022. "The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review," Land, MDPI, vol. 11(9), pages 1-20, August.
    5. Ying Huang & Yongli Zhang & Feifan Deng & Daiqing Zhao & Rong Wu, 2022. "Impacts of Built-Environment on Carbon Dioxide Emissions from Traffic: A Systematic Literature Review," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    6. Xu, Chao & Haase, Dagmar & Su, Meirong & Yang, Zhifeng, 2019. "The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness," Applied Energy, Elsevier, vol. 254(C).
    7. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: Air quality and the density of American cities," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    8. Castells-Quintana, David & Dienesch, Elisa & Krause, Melanie, 2021. "Air pollution in an urban world: A global view on density, cities and emissions," Ecological Economics, Elsevier, vol. 189(C).
    9. Denant-Boemont, Laurent & Gaigné, Carl & Gaté, Romain, 2018. "Urban spatial structure, transport-related emissions and welfare," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 29-45.
    10. Leibowicz, Benjamin D., 2020. "Urban land use and transportation planning for climate change mitigation: A theoretical framework," European Journal of Operational Research, Elsevier, vol. 284(2), pages 604-616.
    11. Davide Burgalassi & Tommaso Luzzati, 2015. "Urban spatial structure and environmental emissions: a survey of the literature and some empirical evidence for Italian NUTS-3 regions," Discussion Papers 2015/199, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    12. Jin, Yushan & Xu, Yuanshuo, 2024. "Carbon reduction of urban form strategies: Regional heterogeneity in Yangtze River Delta, China," Land Use Policy, Elsevier, vol. 141(C).
    13. Theodore Tsekeris, 2022. "Freight Transport Cost and Urban Sprawl across EU Regions," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    14. Fremstad, Anders & Underwood, Anthony & Zahran, Sammy, 2018. "The Environmental Impact of Sharing: Household and Urban Economies in CO2 Emissions," Ecological Economics, Elsevier, vol. 145(C), pages 137-147.
    15. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    16. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: air quality and the density of American cities," LSE Research Online Documents on Economics 117385, London School of Economics and Political Science, LSE Library.
    17. Lijie He & Ying Liu & Peipei He & Hao Zhou, 2019. "Relationship between Air Pollution and Urban Forms: Evidence from Prefecture-Level Cities of the Yangtze River Basin," IJERPH, MDPI, vol. 16(18), pages 1-21, September.
    18. Yanhong Yin & Yuanwen He & Lei Zhang & Dan Zhao, 2019. "Impact of Building Environment on Residential Satisfaction: A Case Study of Ningbo," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    19. Thomas W. Crawford, 2020. "Urban Form as a Technological Driver of Carbon Dioxide Emission: A Structural Human Ecology Analysis of Onroad and Residential Sectors in the Conterminous U.S," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    20. Carl Gaigné & Jacques-François Thisse, 2013. "New Economic Geography and the City," Working Papers SMART 13-02, INRAE UMR SMART.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:6:p:874-:d:1416797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.