IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p5909-d444137.html
   My bibliography  Save this article

Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect

Author

Listed:
  • Ze Liang

    (College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
    Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China)

  • Yueyao Wang

    (College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
    Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China)

  • Jiao Huang

    (College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
    Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China)

  • Feili Wei

    (College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
    Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China)

  • Shuyao Wu

    (College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
    Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
    Environmental Research Center, Duke Kunshan University, Kunshan 215316, China)

  • Jiashu Shen

    (College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
    Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China)

  • Fuyue Sun

    (College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
    Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China)

  • Shuangcheng Li

    (College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
    Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China)

Abstract

At the city scale, the diurnal and seasonal variations in the relationship between urban form and the urban heat island effect remains poorly understood. To address this deficiency, we conducted an empirical study based on data from 150 cities in the Jing-Jin-Ji region of China from 2000 to 2015. The results derived from multiple regression models show that the effects of urban geometric complexity, elongation, and vegetation on urban heat island effect differ among different seasons and between day and night. The impacts of urban geometric factors and population density in summer, particularly those during the daytime, are significantly larger than those in winter. The influence of urban area and night light intensity is greater in winter than in summer and is greater during the day than at night. The effect of NDVI is greater in summer during the daytime. Urban vegetation is the factor with the greatest relative contribution during the daytime, and urban size is the dominant factor at night. Urban geometry is the secondary dominant factor in summer, although its contribution in winter is small. The relative contribution of urban geometry shows an upward trend at a decadal time scale, while that of vegetation decreases correspondingly. The results provide a valuable reference for top-level sustainable urban planning.

Suggested Citation

  • Ze Liang & Yueyao Wang & Jiao Huang & Feili Wei & Shuyao Wu & Jiashu Shen & Fuyue Sun & Shuangcheng Li, 2020. "Seasonal and Diurnal Variations in the Relationships between Urban Form and the Urban Heat Island Effect," Energies, MDPI, vol. 13(22), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5909-:d:444137
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/5909/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/5909/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francisco Estrada & W. J. Wouter Botzen & Richard S. J. Tol, 2017. "A global economic assessment of city policies to reduce climate change impacts," Nature Climate Change, Nature, vol. 7(6), pages 403-406, June.
    2. Lei Zhao & Xuhui Lee & Ronald B. Smith & Keith Oleson, 2014. "Strong contributions of local background climate to urban heat islands," Nature, Nature, vol. 511(7508), pages 216-219, July.
    3. Sushobhan Sen & Jeffery Roesler & Benjamin Ruddell & Ariane Middel, 2019. "Cool Pavement Strategies for Urban Heat Island Mitigation in Suburban Phoenix, Arizona," Sustainability, MDPI, vol. 11(16), pages 1-21, August.
    4. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    5. Cheng He & Liguo Zhou & Weichun Ma & Yuan Wang, 2019. "Spatial Assessment of Urban Climate Change Vulnerability during Different Urbanization Phases," Sustainability, MDPI, vol. 11(8), pages 1-19, April.
    6. Chang Cao & Xuhui Lee & Shoudong Liu & Natalie Schultz & Wei Xiao & Mi Zhang & Lei Zhao, 2016. "Urban heat islands in China enhanced by haze pollution," Nature Communications, Nature, vol. 7(1), pages 1-7, November.
    7. Wang, Shaojian & Liu, Xiaoping & Zhou, Chunshan & Hu, Jincan & Ou, Jinpei, 2017. "Examining the impacts of socioeconomic factors, urban form, and transportation networks on CO2 emissions in China’s megacities," Applied Energy, Elsevier, vol. 185(P1), pages 189-200.
    8. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    9. Lara Engelfriet & Eric Koomen, 2018. "The impact of urban form on commuting in large Chinese cities," Transportation, Springer, vol. 45(5), pages 1269-1295, September.
    10. Cheolyeong Park & Jaehyun Ha & Sugie Lee, 2017. "Association between Three-Dimensional Built Environment and Urban Air Temperature: Seasonal and Temporal Differences," Sustainability, MDPI, vol. 9(8), pages 1-16, July.
    11. Wooldridge, Jeffrey M., 2014. "Quasi-maximum likelihood estimation and testing for nonlinear models with endogenous explanatory variables," Journal of Econometrics, Elsevier, vol. 182(1), pages 226-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jongyeon Lim & Ryozo Ooka, 2021. "A CFD-Based Optimization of Building Configuration for Urban Ventilation Potential," Energies, MDPI, vol. 14(5), pages 1-16, March.
    2. Yan Liu & Zhijie Wang, 2023. "Research Progress and Hotspot Analysis of Urban Heat Island Effects Based on Cite Space Analysis," Land, MDPI, vol. 12(6), pages 1-19, May.
    3. Ahmad Fallatah & Ayman Imam, 2023. "Detecting Land Surface Temperature Variations Using Earth Observation at the Holy Sites in Makkah, Saudi Arabia," Sustainability, MDPI, vol. 15(18), pages 1-18, September.
    4. Shuyao Wu & Kai-Di Liu & Wentao Zhang & Yuehan Dou & Yuqing Chen & Delong Li, 2023. "To better understand realized ecosystem services: An integrated analysis framework of supply, demand, flow and use," Papers 2309.15574, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin Ma & Yueyao Wang & Ze Liang & Jiaqi Ding & Jiashu Shen & Feili Wei & Shuangcheng Li, 2021. "Changing Effect of Urban Form on the Seasonal and Diurnal Variations of Surface Urban Heat Island Intensities (SUHIIs) in More Than 3000 Cities in China," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    2. Yuxin Liu & Chenjing Fan & Dongdong Xue, 2024. "A Review of the Effects of Urban and Green Space Forms on the Carbon Budget Using a Landscape Sustainability Framework," Sustainability, MDPI, vol. 16(5), pages 1-29, February.
    3. Changlong Sun & Yongli Zhang & Wenwen Ma & Rong Wu & Shaojian Wang, 2022. "The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review," Land, MDPI, vol. 11(9), pages 1-20, August.
    4. Xu, Chao & Haase, Dagmar & Su, Meirong & Yang, Zhifeng, 2019. "The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness," Applied Energy, Elsevier, vol. 254(C).
    5. Thomas W. Crawford, 2020. "Urban Form as a Technological Driver of Carbon Dioxide Emission: A Structural Human Ecology Analysis of Onroad and Residential Sectors in the Conterminous U.S," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
    6. Zhonghua Cheng & Xiaowen Hu, 2023. "The effects of urbanization and urban sprawl on CO2 emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1792-1808, February.
    7. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    8. Xiaoxu, Xing & Qiangmin, Xi & Weihao, Shi, 2024. "Impact of urban compactness on carbon emission in Chinese cities: From moderating effects of industrial diversity and job-housing imbalances," Land Use Policy, Elsevier, vol. 143(C).
    9. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    10. Fei Huo & Li Xu & Yanping Li & James S. Famiglietti & Zhenhua Li & Yuya Kajikawa & Fei Chen, 2021. "Using big data analytics to synthesize research domains and identify emerging fields in urban climatology," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    11. Lv, Zhuoran & Guo, Huadong & Zhang, Lu & Liang, Dong & Zhu, Qi & Liu, Xuting & Zhou, Heng & Liu, Yiming & Gou, Yiting & Dou, Xinyu & Chen, Guoqiang, 2024. "Urban public lighting classification method and analysis of energy and environmental effects based on SDGSAT-1 glimmer imager data," Applied Energy, Elsevier, vol. 355(C).
    12. Lin, Jinyao & Lu, Siyan & He, Xiaoyu & Wang, Fang, 2021. "Analyzing the impact of three-dimensional building structure on CO2 emissions based on random forest regression," Energy, Elsevier, vol. 236(C).
    13. Cai, Bofeng & Lu, Jun & Wang, Jinnan & Dong, Huijuan & Liu, Xiaoman & Chen, Yang & Chen, Zhanming & Cong, Jianhui & Cui, Zhipeng & Dai, Chunyan & Fang, Kai & Feng, Tong & Guo, Jie & Li, Fen & Meng, Fa, 2019. "A benchmark city-level carbon dioxide emission inventory for China in 2005," Applied Energy, Elsevier, vol. 233, pages 659-673.
    14. Jie Su & Bo Zhou & Yuanpei Liao & Chaoshen Wang & Tian Feng, 2022. "Impact Mechanism of the Urban Network on Carbon Emissions in Rapidly Developing Regions: Example of 47 Cities in Southwest China," Land, MDPI, vol. 11(4), pages 1-19, March.
    15. Wang, Shaojian & Wang, Jieyu & Zhou, Yuquan, 2018. "Estimating the effects of socioeconomic structure on CO2 emissions in China using an econometric analysis framework," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 18-27.
    16. He Zhang & Jingyi Peng & Dahlia Yu & Lie You & Rui Wang, 2021. "Carbon Emission Governance Zones at the County Level to Promote Sustainable Development," Land, MDPI, vol. 10(2), pages 1-20, February.
    17. Song, Weize & Zhang, Xiaoling & An, Kangxin & Yang, Tao & Li, Heng & Wang, Can, 2021. "Quantifying the spillover elasticities of urban built environment configurations on the adjacent traffic CO2 emissions in mainland China," Applied Energy, Elsevier, vol. 283(C).
    18. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    19. W. J. W. Botzen & M. L. Martinius & P. Bröde & M. A. Folkerts & P. Ignjacevic & F. Estrada & C. N. Harmsen & H. A. M. Daanen, 2020. "Economic valuation of climate change–induced mortality: age dependent cold and heat mortality in the Netherlands," Climatic Change, Springer, vol. 162(2), pages 545-562, September.
    20. Ran Guo & Hong Leng & Qing Yuan & Shiyi Song, 2022. "Impact of Urban Form on CO 2 Emissions under Different Socioeconomic Factors: Evidence from 132 Small and Medium-Sized Cities in China," Land, MDPI, vol. 11(5), pages 1-20, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:5909-:d:444137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.