IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i18p13439-d1235311.html
   My bibliography  Save this article

The Correlation between Urban Form and Carbon Emissions: A Bibliometric and Literature Review

Author

Listed:
  • Yanyi Zhu

    (School of Architecture and Urban Planning, Nanjing University, Nanjing 210093, China)

  • Youpei Hu

    (School of Architecture and Urban Planning, Nanjing University, Nanjing 210093, China)

Abstract

Urban carbon emissions contribute significantly to global warming, but various factors impact these emissions. This study focuses on the correlation between urban form and carbon emissions. Urban form is an entity that can be directly manipulated and optimized by disciplines such as architecture, urban design, and urban planning. The improvement of urban form, particularly at the meso–micro scale, is relatively rapid and affordable compared to other carbon-related factors, such as macro-industry or energy structure. Therefore, conducting a study on the correlation between urban form and carbon emissions is crucial, and the findings will provide direct scientific support for low-carbon city planning. The paper combines bibliometric analysis with a literature review. First, we explore research hotspots and trends using bibliometric analysis. Second, we organize the literature review based on the main research components, methods, and findings in this field. Finally, we propose a framework and direction for future research. It was found that (1) numerous study methodologies are currently being used to investigate the direct and indirect impacts of urban form on carbon emissions, with Chinese scholars’ research progressing rapidly; (2) the primary focus of the study is on the carbon emissions related to residents’ consumption, and there are still issues with inconsistent measurement approaches; (3) there is more research conducted on the macro-scale of cities but not enough on the meso–micro scale. Future research must focus more on meso–microscale analysis, quantifying the key influences and pathways of urban form on carbon emissions. Additionally, it is crucial to establish a comprehensive research framework that can serve as a guide for more effective urban development aimed at reducing carbon emissions.

Suggested Citation

  • Yanyi Zhu & Youpei Hu, 2023. "The Correlation between Urban Form and Carbon Emissions: A Bibliometric and Literature Review," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13439-:d:1235311
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/18/13439/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/18/13439/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Allinson, David & Irvine, Katherine N. & Edmondson, Jill L. & Tiwary, Abhishek & Hill, Graeme & Morris, Jonathan & Bell, Margaret & Davies, Zoe G. & Firth, Steven K. & Fisher, Jill & Gaston, Kevin J. , 2016. "Measurement and analysis of household carbon: The case of a UK city," Applied Energy, Elsevier, vol. 164(C), pages 871-881.
    2. Bin, Shui & Dowlatabadi, Hadi, 2005. "Consumer lifestyle approach to US energy use and the related CO2 emissions," Energy Policy, Elsevier, vol. 33(2), pages 197-208, January.
    3. Liu, Xiaochen & Sweeney, John, 2012. "Modelling the impact of urban form on household energy demand and related CO2 emissions in the Greater Dublin Region," Energy Policy, Elsevier, vol. 46(C), pages 359-369.
    4. Lu Jiang & Bowenpeng Ding & Xiaonan Shi & Chunhua Li & Yamei Chen, 2022. "Household Energy Consumption Patterns and Carbon Emissions for the Megacities—Evidence from Guangzhou, China," Energies, MDPI, vol. 15(8), pages 1-21, April.
    5. Denner Deda & Helena Gervásio & Margarida J. Quina, 2023. "Bibliometric Analysis and Benchmarking of Life Cycle Assessment of Higher Education Institutions," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    6. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    7. Xuanting Li & Xiaohong Wang & Shaopeng Zhang, 2022. "Impacts of Urban Spatial Development Patterns on Carbon Emissions: Evidence from Chinese Cities," Land, MDPI, vol. 11(11), pages 1-16, November.
    8. Wei Wang & Yun Gao & Adrian Pitts & Lili Dong, 2023. "A Bibliometric Analysis of Neighborhood Sense of Community," Sustainability, MDPI, vol. 15(5), pages 1-18, February.
    9. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    10. Lei Su & Wenjiao Yu & Zhongxuan Zhou, 2023. "Global Trends of Carbon Finance: A Bibliometric Analysis," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    11. Yunong Wu & Huijie Wang & Zhexiao Wang & Bin Zhang & Burghard C. Meyer, 2019. "Knowledge Mapping Analysis of Rural Landscape Using CiteSpace," Sustainability, MDPI, vol. 12(1), pages 1-17, December.
    12. Wang, Zhaohua & Yin, Fangchao & Zhang, Yixiang & Zhang, Xian, 2012. "An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China," Applied Energy, Elsevier, vol. 100(C), pages 277-284.
    13. Abdollah Mobaraki & Beser Oktay Vehbi, 2022. "A Conceptual Model for Assessing the Relationship between Urban Morphology and Sustainable Urban Form," Sustainability, MDPI, vol. 14(5), pages 1-20, March.
    14. Jared R. VandeWeghe & Christopher Kennedy, 2007. "A Spatial Analysis of Residential Greenhouse Gas Emissions in the Toronto Census Metropolitan Area," Journal of Industrial Ecology, Yale University, vol. 11(2), pages 133-144, April.
    15. Bin, Shui & Dowlatabadi, Hadi, 2005. "Corrigendum to "Consumer lifestyles approach to US energy use and the related CO2 emissions": [Energy Policy 33 (2005) 197-208]," Energy Policy, Elsevier, vol. 33(10), pages 1362-1363, July.
    16. Changlong Sun & Yongli Zhang & Wenwen Ma & Rong Wu & Shaojian Wang, 2022. "The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review," Land, MDPI, vol. 11(9), pages 1-20, August.
    17. Ying Huang & Yongli Zhang & Feifan Deng & Daiqing Zhao & Rong Wu, 2022. "Impacts of Built-Environment on Carbon Dioxide Emissions from Traffic: A Systematic Literature Review," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    18. Long, Yin & Yoshida, Yoshikuni & Fang, Kai & Zhang, Haoran & Dhondt, Maya, 2019. "City-level household carbon footprint from purchaser point of view by a modified input-output model," Applied Energy, Elsevier, vol. 236(C), pages 379-387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinhang Tang & Shuai Shao & Jia Cui, 2024. "Spatial-Temporal Evolution and Environmental Regulation Effects of Carbon Emissions in Shrinking and Growing Cities: Empirical Evidence from 272 Cities in China," Sustainability, MDPI, vol. 16(17), pages 1-21, August.
    2. Muhan Li & Minghao Zuo & Saiyi Chen & Shuang Tang & Tian Chen & Jia Liu, 2024. "Impact of Urban Spatial Compactness on Carbon Emissions: Heterogeneity at the County Level in the Beijing–Tianjin–Hebei Area, China," Land, MDPI, vol. 13(12), pages 1-24, December.
    3. Xiaoxu, Xing & Qiangmin, Xi & Weihao, Shi, 2024. "Impact of urban compactness on carbon emission in Chinese cities: From moderating effects of industrial diversity and job-housing imbalances," Land Use Policy, Elsevier, vol. 143(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingjing Chen & Yangyang Lin & Xiaojun Wang & Bingjing Mao & Lihong Peng, 2022. "Direct and Indirect Carbon Emission from Household Consumption Based on LMDI and SDA Model: A Decomposition and Comparison Analysis," Energies, MDPI, vol. 15(14), pages 1-22, July.
    2. Lina Liu & Jiansheng Qu & Tek Narayan Maraseni & Yibo Niu & Jingjing Zeng & Lihua Zhang & Li Xu, 2020. "Household CO 2 Emissions: Current Status and Future Perspectives," IJERPH, MDPI, vol. 17(19), pages 1-19, September.
    3. Sanna Ala-Mantila & Jukka Heinonen & Seppo Junnila, 2013. "Greenhouse Gas Implications of Urban Sprawl in the Helsinki Metropolitan Area," Sustainability, MDPI, vol. 5(10), pages 1-18, October.
    4. Zhang, Junyi & Teng, Fei & Zhou, Shaojie, 2020. "The structural changes and determinants of household energy choices and energy consumption in urban China: Addressing the role of building type," Energy Policy, Elsevier, vol. 139(C).
    5. Chen, Guangwu & Zhu, Yuhan & Wiedmann, Thomas & Yao, Lina & Xu, Lixiao & Wang, Yafei, 2019. "Urban-rural disparities of household energy requirements and influence factors in China: Classification tree models," Applied Energy, Elsevier, vol. 250(C), pages 1321-1335.
    6. Yuan, Baolong & Ren, Shenggang & Chen, Xiaohong, 2015. "The effects of urbanization, consumption ratio and consumption structure on residential indirect CO2 emissions in China: A regional comparative analysis," Applied Energy, Elsevier, vol. 140(C), pages 94-106.
    7. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    8. Joyance Meechai & Manel Wijesinha, 2022. "Household energy expenditure and consumption patterns in the United States," Computational Statistics, Springer, vol. 37(5), pages 2095-2127, November.
    9. Yulin Liu & Min Zhang & Rujia Liu, 2020. "The Impact of Income Inequality on Carbon Emissions in China: A Household-Level Analysis," Sustainability, MDPI, vol. 12(7), pages 1-22, March.
    10. Wang, Keying & Cui, Yongyan & Zhang, Hongwu & Shi, Xunpeng & Xue, Jinjun & Yuan, Zhao, 2022. "Household carbon footprints inequality in China: Drivers, components and dynamics," Energy Economics, Elsevier, vol. 115(C).
    11. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    12. Zhang, Junjie & Yu, Biying & Wei, Yi-Ming, 2018. "Heterogeneous impacts of households on carbon dioxide emissions in Chinese provinces," Applied Energy, Elsevier, vol. 229(C), pages 236-252.
    13. Xueting Jin & Yu Li & Dongqi Sun & Jinzhou Zhang & Ji Zheng, 2019. "Factors Controlling Urban and Rural Indirect Carbon Dioxide Emissions in Household Consumption: A Case Study in Beijing," Sustainability, MDPI, vol. 11(23), pages 1-21, November.
    14. Hongwu Zhang & Lequan Zhang & Keying Wang & Xunpeng Shi, 2019. "Unveiling Key Drivers of Indirect Carbon Emissions of Chinese Older Households," Sustainability, MDPI, vol. 11(20), pages 1-17, October.
    15. Lina Liu & Jiansheng Qu & Afton Clarke-Sather & Tek Narayan Maraseni & Jiaxing Pang, 2017. "Spatial Variations and Determinants of Per Capita Household CO 2 Emissions (PHCEs) in China," Sustainability, MDPI, vol. 9(7), pages 1-19, July.
    16. Xinkuo Xu & Liyan Han, 2017. "Diverse Effects of Consumer Credit on Household Carbon Emissions at Quantiles: Evidence from Urban China," Sustainability, MDPI, vol. 9(9), pages 1-25, September.
    17. Thøgersen, John, 2017. "Housing-related lifestyle and energy saving: A multi-level approach," Energy Policy, Elsevier, vol. 102(C), pages 73-87.
    18. Liu, Lan-Cui & Wu, Gang, 2013. "Relating five bounded environmental problems to China's household consumption in 2011–2015," Energy, Elsevier, vol. 57(C), pages 427-433.
    19. Guiying Cao & Junlian Gao & Ming Ren & Tatiana Ermolieva & Xiangyang Xu & Elena Rovenskaya, 2017. "Societal Dimension of Energy Consumption ¨C Exploring Environmental Inequality in China," Research in World Economy, Research in World Economy, Sciedu Press, vol. 8(2), pages 66-77, December.
    20. Lixiao Zhang & Qiuhong Hu & Fan Zhang, 2014. "Input-Output Modeling for Urban Energy Consumption in Beijing: Dynamics and Comparison," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:18:p:13439-:d:1235311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.