IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i18p11684-d916698.html
   My bibliography  Save this article

CO 2 Emissions Inventory and Its Uncertainty Analysis of China’s Industrial Parks: A Case Study of the Maanshan Economic and Technological Development Area

Author

Listed:
  • Jian Zhang

    (SEPA Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Jingyang Liu

    (SEPA Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Li Dong

    (SEPA Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Qi Qiao

    (SEPA Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

Abstract

The Chinese government has pledged to peak carbon emissions by 2030 and achieve carbon neutrality by 2060. Industrial parks are the key to achieving the carbon peak and neutrality in industrial sectors. Establishing the CO 2 emissions inventory is the first step to achieve the carbon peak in industrial parks. In this study, a comprehensive CO 2 emissions inventory was established for industrial parks, including three parts: energy consumption, industrial process, and waste disposal. We considered scope 1, 2, and 3 emissions and established an uncertainty analysis framework. Accordingly, scope 1 covered the emissions within the park boundary, scope 2 emissions covered those resulting from electricity and heat usage inside the boundary, and scope 3 included those indirect emissions beyond the boundary. The Maanshan Economic and Technological Development Area (MDA), a typical booming national eco-industrial park of China, was chosen for this case study. The results showed that the MDA CO 2 emissions increased yearly, from 376,836.57 tons in 2016 to 772,170.93 tons in 2021. From the industrial structure perspective, heavy industry contributed the highest emissions. By dividing the emissions into scope 1, 2, and 3, scope 2 could be identified as the largest emissions source. In addition, we conducted inventory uncertainty analyses incorporated by activity levels, emissions factors, and unspecific factors. Overall, these results may promote the establishment of greenhouse gas accounting standards for Chinese industrial parks.

Suggested Citation

  • Jian Zhang & Jingyang Liu & Li Dong & Qi Qiao, 2022. "CO 2 Emissions Inventory and Its Uncertainty Analysis of China’s Industrial Parks: A Case Study of the Maanshan Economic and Technological Development Area," IJERPH, MDPI, vol. 19(18), pages 1-14, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11684-:d:916698
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/18/11684/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/18/11684/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Liu, Lingxuan & Zhang, Bing & Bi, Jun & Wei, Qi & He, Pan, 2012. "The greenhouse gas mitigation of industrial parks in China: A case study of Suzhou Industrial Park," Energy Policy, Elsevier, vol. 46(C), pages 301-307.
    2. Sheng Zheng & Yukuan Huang & Yu Sun, 2022. "Effects of Urban Form on Carbon Emissions in China: Implications for Low-Carbon Urban Planning," Land, MDPI, vol. 11(8), pages 1-17, August.
    3. Wang, Hongsheng & Lei, Yue & Wang, Haikun & Liu, Miaomiao & Yang, Jie & Bi, Jun, 2013. "Carbon reduction potentials of China's industrial parks: A case study of Suzhou Industry Park," Energy, Elsevier, vol. 55(C), pages 668-675.
    4. Yu, Xiang & Chen, Hongbo & Wang, Bo & Wang, Ran & Shan, Yuli, 2018. "Driving forces of CO2 emissions and mitigation strategies of China’s National low carbon pilot industrial parks," Applied Energy, Elsevier, vol. 212(C), pages 1553-1562.
    5. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    6. Weiwu Wang & Huan Chen & Lizhong Wang & Xinyu Li & Danyi Mao & Shan Wang, 2022. "Exploration of Spatio-Temporal Characteristics of Carbon Emissions from Energy Consumption and Their Driving Factors: A Case Analysis of the Yangtze River Delta, China," IJERPH, MDPI, vol. 19(15), pages 1-25, August.
    7. Haiyan Duan & Xize Dong & Pinlei Xie & Siyan Chen & Baoyang Qin & Zijia Dong & Wei Yang, 2022. "Peaking Industrial CO 2 Emission in a Typical Heavy Industrial Region: From Multi-Industry and Multi-Energy Type Perspectives," IJERPH, MDPI, vol. 19(13), pages 1-30, June.
    8. Yu Hu & Yuanying Chi & Wenbing Zhou & Zhengzao Wang & Yongke Yuan & Ruoyang Li, 2022. "Research on Energy Structure Optimization and Carbon Emission Reduction Path in Beijing under the Dual Carbon Target," Energies, MDPI, vol. 15(16), pages 1-17, August.
    9. John Downie & Wendy Stubbs, 2012. "Corporate Carbon Strategies and Greenhouse Gas Emission Assessments: The Implications of Scope 3 Emission Factor Selection," Business Strategy and the Environment, Wiley Blackwell, vol. 21(6), pages 412-422, September.
    10. Huiping Wang & Zhun Zhang, 2022. "Forecasting CO 2 Emissions Using A Novel Grey Bernoulli Model: A Case of Shaanxi Province in China," IJERPH, MDPI, vol. 19(9), pages 1-22, April.
    11. Dong, Huijuan & Geng, Yong & Xi, Fengming & Fujita, Tsuyoshi, 2013. "Carbon footprint evaluation at industrial park level: A hybrid life cycle assessment approach," Energy Policy, Elsevier, vol. 57(C), pages 298-307.
    12. Kai Liu & Ziyi Ni & Mei Ren & Xiaoqing Zhang, 2022. "Spatial Differences and Influential Factors of Urban Carbon Emissions in China under the Target of Carbon Neutrality," IJERPH, MDPI, vol. 19(11), pages 1-14, May.
    13. Kun Mo Lee & Min Hyeok Lee & Jong Seok Lee & Joo Young Lee, 2020. "Uncertainty Analysis of Greenhouse Gas (GHG) Emissions Simulated by the Parametric Monte Carlo Simulation and Nonparametric Bootstrap Method," Energies, MDPI, vol. 13(18), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Kun & Gao, Hanbo & Liu, Rui & Lyu, Yizheng & Wan, Mei & Tian, Jinping & Chen, Lyujun, 2024. "Review on low-carbon development in Chinese industrial parks driven by bioeconomy strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Xue, Ruoyu & Wang, Shanshan & Long, Wenqi & Gao, Gengyu & Liu, Donghui & Zhang, Ruiqin, 2021. "Uncovering GHG emission characteristics of industrial parks in Central China via emission inventory and cluster analysis," Energy Policy, Elsevier, vol. 151(C).
    3. Dong, Huijuan & Ohnishi, Satoshi & Fujita, Tsuyoshi & Geng, Yong & Fujii, Minoru & Dong, Liang, 2014. "Achieving carbon emission reduction through industrial & urban symbiosis: A case of Kawasaki," Energy, Elsevier, vol. 64(C), pages 277-286.
    4. Yu, Xiang & Chen, Hongbo & Wang, Bo & Wang, Ran & Shan, Yuli, 2018. "Driving forces of CO2 emissions and mitigation strategies of China’s National low carbon pilot industrial parks," Applied Energy, Elsevier, vol. 212(C), pages 1553-1562.
    5. Jianmin You & Xiqiang Chen & Jindao Chen, 2021. "Decomposition of Industrial Electricity Efficiency and Electricity-Saving Potential of Special Economic Zones in China Considering the Heterogeneity of Administrative Hierarchy and Regional Location," Energies, MDPI, vol. 14(17), pages 1-22, September.
    6. Zhang, Anshan & Wang, Feiliang & Li, Huanyu & Pang, Bo & Yang, Jian, 2024. "Carbon emissions accounting and estimation of carbon reduction potential in the operation phase of residential areas based on digital twin," Applied Energy, Elsevier, vol. 376(PB).
    7. Jiang Zhu & Xiang Li & Huiming Huang & Xiangdong Yin & Jiangchun Yao & Tao Liu & Jiexuan Wu & Zhangcheng Chen, 2023. "Spatiotemporal Evolution of Carbon Emissions According to Major Function-Oriented Zones: A Case Study of Guangdong Province, China," IJERPH, MDPI, vol. 20(3), pages 1-20, January.
    8. Huang, Beijia & Jiang, Ping & Wang, Shaoping & Zhao, Juan & Wu, Luchao, 2016. "Low carbon innovation and practice in Caohejing High-Tech Industrial Park of Shanghai," International Journal of Production Economics, Elsevier, vol. 181(PB), pages 367-373.
    9. Fengjian Ge & Jiangfeng Li & Yi Zhang & Shipeng Ye & Peng Han, 2022. "Impacts of Energy Structure on Carbon Emissions in China, 1997–2019," IJERPH, MDPI, vol. 19(10), pages 1-25, May.
    10. Cao, Yue & Guo, Lingling & Qu, Ying & Wang, Liang, 2024. "Possibility and pathways of China's nonferrous metals industry to achieve its carbon peak target before 2030: A new integrated dynamic forecasting model," Energy, Elsevier, vol. 306(C).
    11. Man, Yi & Yan, Yukun & Wang, Xu & Ren, Jingzheng & Xiong, Qingang & He, Zhenglei, 2023. "Overestimated carbon emission of the pulp and paper industry in China," Energy, Elsevier, vol. 273(C).
    12. Yi Zhang & Tian Lan & Wei Hu, 2023. "A Two-Stage Robust Optimization Microgrid Model Considering Carbon Trading and Demand Response," Sustainability, MDPI, vol. 15(19), pages 1-22, October.
    13. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    14. Ling Yang & Michael L. Lahr, 2019. "The Drivers of China’s Regional Carbon Emission Change—A Structural Decomposition Analysis from 1997 to 2007," Sustainability, MDPI, vol. 11(12), pages 1-18, June.
    15. Chen, Lu & Li, Xin & Liu, Wei & Kang, Xinyu & Zhao, Yifei & Wang, Minxi, 2024. "System dynamics-multiple the objective optimization model for the coordinated development of urban economy-energy-carbon system," Applied Energy, Elsevier, vol. 371(C).
    16. Xiao, Huijuan & Wang, Daoping & Qi, Yu & Shao, Shuai & Zhou, Ya & Shan, Yuli, 2021. "The governance-production nexus of eco-efficiency in Chinese resource-based cities: A two-stage network DEA approach," Energy Economics, Elsevier, vol. 101(C).
    17. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    18. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    19. Qifan Guan, 2023. "Decomposing and Decoupling the Energy-Related Carbon Emissions in the Beijing–Tianjin–Hebei Region Using the Extended LMDI and Tapio Index Model," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    20. Cheng, Qi & Yang, Jun, 2024. "Is green place-based policy effective in mitigating pollution? Firm-level evidence from China," Economic Analysis and Policy, Elsevier, vol. 83(C), pages 530-547.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:18:p:11684-:d:916698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.