IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v51y2024i1p157-173.html
   My bibliography  Save this article

Planning factors affecting carbon footprints of residents: Density, land use, and suburbanization

Author

Listed:
  • Taehyun Kim
  • Youngre Noh

Abstract

Energy-efficient urban development and carbon footprints (CFs) are often discussed in relation to climate change. The optimal level of urban density from a carbon reduction perspective at the city level has been much debated. However, considering possible trade-offs or co-benefits for CFs in the housing and travel sectors, it remains difficult to evaluate how intra-urban/residential densities and mixed land-use patterns relate to individual CFs at a community level in different seasons. The study objective was to demonstrate the changes in the CFs of residents in summer and winter according to spatiotemporal changes in urban forms, such as intra-urban/residential densities and mixed land-use patterns. Based on geographical data and CF survey results from Seoul and Gyeonggi in 2009 and 2018, four path analysis models were used to verify the spatiotemporal variances of the relationships between urban forms and the CFs of the housing/travel sectors (HCF/TCF). Path analysis with a set of mediation variables enables the evaluation of possible trade-offs, or co-benefits, when investigating the impacts of different measures of intra-urban densities and mixed land-use patterns on the CFs. Furthermore, the moderating effects of different cooling and heating patterns in different seasons on CFs were verified by comparing the four path analysis models in different spatiotemporal contexts. The results showed spatiotemporal changes in urban density and different impacts of urban and residential densities on the TCF. It was also revealed that a low percentage of residential land use in urbanized areas offsets the advantage of high density in reducing TCF and HCF. Seasonal differences were also observed in the effects of residential density and HCF. The results of this study help us understand the spatiotemporal characteristics of TCF and HCF in urban settings, which can assist efforts to achieve carbon neutrality goals.

Suggested Citation

  • Taehyun Kim & Youngre Noh, 2024. "Planning factors affecting carbon footprints of residents: Density, land use, and suburbanization," Environment and Planning B, , vol. 51(1), pages 157-173, January.
  • Handle: RePEc:sae:envirb:v:51:y:2024:i:1:p:157-173
    DOI: 10.1177/23998083231172990
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/23998083231172990
    Download Restriction: no

    File URL: https://libkey.io/10.1177/23998083231172990?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Amnon Frenkel & Maya Ashkenazi, 2008. "The integrated sprawl index: measuring the urban landscape in Israel," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 42(1), pages 99-121, March.
    2. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    3. Lee, Sungwon & Lee, Bumsoo, 2014. "The influence of urban form on GHG emissions in the U.S. household sector," Energy Policy, Elsevier, vol. 68(C), pages 534-549.
    4. Lin Ma & Yueyao Wang & Ze Liang & Jiaqi Ding & Jiashu Shen & Feili Wei & Shuangcheng Li, 2021. "Changing Effect of Urban Form on the Seasonal and Diurnal Variations of Surface Urban Heat Island Intensities (SUHIIs) in More Than 3000 Cities in China," Sustainability, MDPI, vol. 13(5), pages 1-17, March.
    5. Ivan Muñiz & Andrés Dominguez, 2020. "The Impact of Urban Form and Spatial Structure on per Capita Carbon Footprint in U.S. Larger Metropolitan Areas," Sustainability, MDPI, vol. 12(1), pages 1-19, January.
    6. Sheng Zheng & Yukuan Huang & Yu Sun, 2022. "Effects of Urban Form on Carbon Emissions in China: Implications for Low-Carbon Urban Planning," Land, MDPI, vol. 11(8), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changlong Sun & Yongli Zhang & Wenwen Ma & Rong Wu & Shaojian Wang, 2022. "The Impacts of Urban Form on Carbon Emissions: A Comprehensive Review," Land, MDPI, vol. 11(9), pages 1-20, August.
    2. Zhonghua Cheng & Xiaowen Hu, 2023. "The effects of urbanization and urban sprawl on CO2 emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1792-1808, February.
    3. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    4. Silva, Mafalda C. & Horta, Isabel M. & Leal, Vítor & Oliveira, Vítor, 2017. "A spatially-explicit methodological framework based on neural networks to assess the effect of urban form on energy demand," Applied Energy, Elsevier, vol. 202(C), pages 386-398.
    5. Yuxin Liu & Chenjing Fan & Dongdong Xue, 2024. "A Review of the Effects of Urban and Green Space Forms on the Carbon Budget Using a Landscape Sustainability Framework," Sustainability, MDPI, vol. 16(5), pages 1-29, February.
    6. Fang, Chuanglin & Wang, Shaojian & Li, Guangdong, 2015. "Changing urban forms and carbon dioxide emissions in China: A case study of 30 provincial capital cities," Applied Energy, Elsevier, vol. 158(C), pages 519-531.
    7. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    8. Tomer Fishman & Niko Heeren & Stefan Pauliuk & Peter Berrill & Qingshi Tu & Paul Wolfram & Edgar G. Hertwich, 2021. "A comprehensive set of global scenarios of housing, mobility, and material efficiency for material cycles and energy systems modeling," Journal of Industrial Ecology, Yale University, vol. 25(2), pages 305-320, April.
    9. Eric J. Heikkila & Ying Xu, 2022. "Polycentric Urbanization and Sustainable Development in China," Global Policy, London School of Economics and Political Science, vol. 13(S1), pages 69-78, April.
    10. LEE, Sungwon & LEE, Bumsoo, 2020. "Comparing the impacts of local land use and urban spatial structure on household VMT and GHG emissions," Journal of Transport Geography, Elsevier, vol. 84(C).
    11. Haiyan Lei & Suiping Zeng & Aihemaiti Namaiti & Jian Zeng, 2023. "The Impacts of Road Traffic on Urban Carbon Emissions and the Corresponding Planning Strategies," Land, MDPI, vol. 12(4), pages 1-20, March.
    12. Yulin Liu & Min Zhang & Rujia Liu, 2020. "The Impact of Income Inequality on Carbon Emissions in China: A Household-Level Analysis," Sustainability, MDPI, vol. 12(7), pages 1-22, March.
    13. Gudipudi, Ramana & Fluschnik, Till & Ros, Anselmo García Cantú & Walther, Carsten & Kropp, Jürgen P., 2016. "City density and CO2 efficiency," Energy Policy, Elsevier, vol. 91(C), pages 352-361.
    14. Ki, Jaehong & Yoon, D.K., 2024. "The impact of urban form on residential electricity consumption: Panel data analyses of South Korean urban municipalities," Energy Policy, Elsevier, vol. 186(C).
    15. Jacques Simon Song & Thierry Messie Pondie & Loudi Njoya, 2024. "Urbanization in Africa: Does Energy Poverty Matter?," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 11750-11783, September.
    16. Ying Huang & Yongli Zhang & Feifan Deng & Daiqing Zhao & Rong Wu, 2022. "Impacts of Built-Environment on Carbon Dioxide Emissions from Traffic: A Systematic Literature Review," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    17. Xu, Chao & Haase, Dagmar & Su, Meirong & Yang, Zhifeng, 2019. "The impact of urban compactness on energy-related greenhouse gas emissions across EU member states: Population density vs physical compactness," Applied Energy, Elsevier, vol. 254(C).
    18. Xiaoyue Zeng & Deliang Fan & Yunfei Zheng & Shijie Li, 2024. "Exploring the Differentiated Impact of Urban Spatial Form on Carbon Emissions: Evidence from Chinese Cities," Land, MDPI, vol. 13(6), pages 1-19, June.
    19. Chengye Jia & Shuang Feng & Hong Chu & Weige Huang, 2023. "The Heterogeneous Effects of Urban Form on CO 2 Emissions: An Empirical Analysis of 255 Cities in China," Land, MDPI, vol. 12(5), pages 1-24, April.
    20. Yao Xu & Liang Sun & Bo Wang & Shanmin Ding & Xichen Ge & Shuangrong Cai, 2023. "Research on the Impact of Carbon Emissions and Spatial Form of Town Construction Land: A Study of Macheng, China," Land, MDPI, vol. 12(7), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:51:y:2024:i:1:p:157-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.