IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v13y2020i6p107-d364466.html
   My bibliography  Save this article

Long Memory in the Volatility of Selected Cryptocurrencies: Bitcoin, Ethereum and Ripple

Author

Listed:
  • Pınar Kaya Soylu

    (Department of Business Informatics, Faculty of Business Administration, Marmara University, Istanbul 34722, Turkey)

  • Mustafa Okur

    (Department of Capital markets, School of Banking & Insurance, Marmara University, Istanbul 34722, Turkey)

  • Özgür Çatıkkaş

    (Department of Insurance, School of Banking & Insurance, Marmara University, Istanbul 34722, Turkey)

  • Z. Ayca Altintig

    (Peter F. Drucker and Masatoshi Ito Graduate School of Management, Claremont Graduate University, Claremont, CA 91711, USA)

Abstract

This paper examines the volatility of cryptocurrencies, with particular attention to their potential long memory properties. Using daily data for the three major cryptocurrencies, namely Ripple, Ethereum, and Bitcoin, we test for the long memory property using, Rescaled Range Statistics (R/S), Gaussian Semi Parametric (GSP) and the Geweke and Porter-Hudak (GPH) Model Method. Our findings show that squared returns of three cryptocurrencies have a significant long memory, supporting the use of fractional Generalized Auto Regressive Conditional Heteroscedasticity (GARCH) extensions as suitable modelling technique. Our findings indicate that the Hyperbolic GARCH (HYGARCH) model appears to be the best fitted model for Bitcoin. On the other hand, the Fractional Integrated GARCH (FIGARCH) model with skewed student distribution produces better estimations for Ethereum. Finally, FIGARCH model with student distribution appears to give a good fit for Ripple return. Based on Kupieck’s tests for Value at Risk (VaR) back-testing and expected shortfalls we can conclude that our models perform correctly in most of the cases for both the negative and positive returns.

Suggested Citation

  • Pınar Kaya Soylu & Mustafa Okur & Özgür Çatıkkaş & Z. Ayca Altintig, 2020. "Long Memory in the Volatility of Selected Cryptocurrencies: Bitcoin, Ethereum and Ripple," JRFM, MDPI, vol. 13(6), pages 1-21, May.
  • Handle: RePEc:gam:jjrfmx:v:13:y:2020:i:6:p:107-:d:364466
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/13/6/107/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/13/6/107/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gkillas, Konstantinos & Katsiampa, Paraskevi, 2018. "An application of extreme value theory to cryptocurrencies," Economics Letters, Elsevier, vol. 164(C), pages 109-111.
    2. Ricardo J Caballero & Emmanuel Farhi & Pierre-Olivier Gourinchas, 2021. "Global Imbalances and Policy Wars at the Zero Lower Bound [“Safe Assets”]," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(6), pages 2570-2621.
    3. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2018. "On the determinants of bitcoin returns: A LASSO approach," Finance Research Letters, Elsevier, vol. 27(C), pages 235-240.
    4. Cheah, Eng-Tuck & Mishra, Tapas & Parhi, Mamata & Zhang, Zhuang, 2018. "Long Memory Interdependency and Inefficiency in Bitcoin Markets," Economics Letters, Elsevier, vol. 167(C), pages 18-25.
    5. repec:nas:journl:v:115:y:2018:p:1131-1134 is not listed on IDEAS
    6. Marie Briere & Kim Oosterlinck & Ariane Szafarz, 2015. "Virtual Currency, Tangible Return: Portfolio Diversification with Bitcoins," Post-Print CEB, ULB -- Universite Libre de Bruxelles, vol. 16(6), pages 365-373.
    7. Robinson, P.M. & Henry, M., 1999. "Long And Short Memory Conditional Heteroskedasticity In Estimating The Memory Parameter Of Levels," Econometric Theory, Cambridge University Press, vol. 15(3), pages 299-336, June.
    8. Urquhart, Andrew, 2018. "What causes the attention of Bitcoin?," Economics Letters, Elsevier, vol. 166(C), pages 40-44.
    9. Olivier Blanchard, 2021. "Currency Wars, Coordination, and Capital Controls," World Scientific Book Chapters, in: Steven J Davis & Edward S Robinson & Bernard Yeung (ed.), THE ASIAN MONETARY POLICY FORUM Insights for Central Banking, chapter 4, pages 134-157, World Scientific Publishing Co. Pte. Ltd..
    10. Lahmiri, Salim & Bekiros, Stelios & Salvi, Antonio, 2018. "Long-range memory, distributional variation and randomness of bitcoin volatility," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 43-48.
    11. Jacopo Carmassi & Daniel Gros & Stefano Micossi, 2009. "The Global Financial Crisis: Causes and Cures," Journal of Common Market Studies, Wiley Blackwell, vol. 47(5), pages 977-996, November.
    12. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    13. O. Scaillet, 2004. "Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 14(1), pages 115-129, January.
    14. Bouri, Elie & Gupta, Rangan & Lau, Chi Keung Marco & Roubaud, David & Wang, Shixuan, 2018. "Bitcoin and global financial stress: A copula-based approach to dependence and causality in the quantiles," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 297-307.
    15. Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
    16. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    17. repec:bla:jcmkts:v:47:y:2009:i::p:977-996 is not listed on IDEAS
    18. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    19. Iwamura, Mitsuru & Kitamura, Yukinobu & 北村, 行伸 & Matsumoto, Tsutomu & Saito, Kenji, 2019. "Can We Stabilize the Price of a Cryptocurrency?: Understanding the Design of Bitcoin and Its Potential to Compete with Central Bank Money," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 60(1), pages 41-60, June.
    20. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    21. Joerg Osterrieder & Julian Lorenz, 2017. "A Statistical Risk Assessment Of Bitcoin And Its Extreme Tail Behavior," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 1-19, March.
    22. Gil-Alana, Luis A. & Shittu, Olanrewaju I. & Yaya, OlaOluwa S., 2014. "On the persistence and volatility in European, American and Asian stocks bull and bear markets," Journal of International Money and Finance, Elsevier, vol. 40(C), pages 149-162.
    23. Pratap Chandra Pati & Parama Barai & Prabina Rajib, 2018. "Forecasting stock market volatility and information content of implied volatility index," Applied Economics, Taylor & Francis Journals, vol. 50(23), pages 2552-2568, May.
    24. Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
    25. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    26. Elie Bouri & Luis A. Gil‐Alana & Rangan Gupta & David Roubaud, 2019. "Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 412-426, January.
    27. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    28. Chkili, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2014. "Volatility forecasting and risk management for commodity markets in the presence of asymmetry and long memory," Energy Economics, Elsevier, vol. 41(C), pages 1-18.
    29. Theodore Panagiotidis & Thanasis Stengos & Orestis Vravosinos, 2020. "A Principal Component-Guided Sparse Regression Approach for the Determination of Bitcoin Returns," JRFM, MDPI, vol. 13(2), pages 1-10, February.
    30. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    31. Dominguez, Kathryn M.E. & Hashimoto, Yuko & Ito, Takatoshi, 2012. "International reserves and the global financial crisis," Journal of International Economics, Elsevier, vol. 88(2), pages 388-406.
    32. Troster, Victor & Tiwari, Aviral Kumar & Shahbaz, Muhammad & Macedo, Demian Nicolás, 2019. "Bitcoin returns and risk: A general GARCH and GAS analysis," Finance Research Letters, Elsevier, vol. 30(C), pages 187-193.
    33. Helmut Wagner, 2010. "The causes of the recent financial crisis and the role of central banks in avoiding the next one," International Economics and Economic Policy, Springer, vol. 7(1), pages 63-82, May.
    34. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    35. Arouri, Mohamed El Hedi & Hammoudeh, Shawkat & Lahiani, Amine & Nguyen, Duc Khuong, 2012. "Long memory and structural breaks in modeling the return and volatility dynamics of precious metals," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(2), pages 207-218.
    36. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    37. Yukun Liu & Aleh Tsyvinski, 2018. "Risks and Returns of Cryptocurrency," NBER Working Papers 24877, National Bureau of Economic Research, Inc.
    38. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    39. Mandelbrot, Benoit B, 1971. "When Can Price Be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 225-236, August.
    40. Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
    41. Michael D. Bordo & Pierre L. Siklos, 2017. "Central Bank Credibility before and after the Crisis," Open Economies Review, Springer, vol. 28(1), pages 19-45, February.
    42. Anna, Petrenko, 2016. "Мaркування готової продукції як складова частина інформаційного забезпечення маркетингової діяльності підприємств овочепродуктового підкомплексу," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 2(1), March.
    43. Cukierman, Alex, 2013. "Monetary policy and institutions before, during, and after the global financial crisis," Journal of Financial Stability, Elsevier, vol. 9(3), pages 373-384.
    44. Pradipta Kumar SAHOO, 2017. "Bitcoin as digital money: Its growth and future sustainability," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(4(613), W), pages 53-64, Winter.
    45. Carey Caginalp & Gunduz Caginalp, 2018. "Valuation, Liquidity Price, and Stability of Cryptocurrencies," Papers 1802.09959, arXiv.org.
    46. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    47. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, vol. 2(Apr), pages 39-69.
    48. Mensi, Walid & Al-Yahyaee, Khamis Hamed & Kang, Sang Hoon, 2019. "Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from Bitcoin and Ethereum," Finance Research Letters, Elsevier, vol. 29(C), pages 222-230.
    49. Michel Rauchs & Garrick Hileman, 2017. "Global Cryptocurrency Benchmarking Study," Cambridge Centre for Alternative Finance Reports 201704-gcbs, Cambridge Centre for Alternative Finance, Cambridge Judge Business School, University of Cambridge.
    50. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    51. Franklin Allen & Elena Carletti, 2010. "An Overview of the Crisis: Causes, Consequences, and Solutions," International Review of Finance, International Review of Finance Ltd., vol. 10(1), pages 1-26, March.
    52. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    53. Stavros Stavroyiannis, 2018. "Value-at-risk and related measures for the Bitcoin," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 19(2), pages 127-136, March.
    54. Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Assaf, Ata & Bhandari, Avishek & Charif, Husni & Demir, Ender, 2022. "Multivariate long memory structure in the cryptocurrency market: The impact of COVID-19," International Review of Financial Analysis, Elsevier, vol. 82(C).
    2. Abhishek Sah & Biswajit Patra, 2023. "Dynamic Linkages Among Cryptocurrencies - The Role of COVID-19," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 4(2), pages 1-6.
    3. Walid Chkili, 2021. "Modeling Bitcoin price volatility: long memory vs Markov switching," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 433-448, September.
    4. Christoph J. Borner & Ingo Hoffmann & Jonas Krettek & Lars M. Kurzinger & Tim Schmitz, 2021. "On the Return Distributions of a Basket of Cryptocurrencies and Subsequent Implications," Papers 2105.12334, arXiv.org.
    5. Carlos Trucíos & James W. Taylor, 2023. "A comparison of methods for forecasting value at risk and expected shortfall of cryptocurrencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 989-1007, July.
    6. Tanya Araújo & Paulo Barbosa, 2024. "Reconstructing Cryptocurrency Processes via Markov Chains," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2509-2521, October.
    7. Kerolly Kedma Felix do Nascimento & Fábio Sandro dos Santos & Jader Silva Jale & Silvio Fernando Alves Xavier Júnior & Tiago A. E. Ferreira, 2023. "Extracting Rules via Markov Chains for Cryptocurrencies Returns Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1095-1114, March.
    8. Micu Raluca & Dumitrescu Dalina, 2022. "Study regarding the volatility of main cryptocurrencies," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 16(1), pages 179-187, August.
    9. Tanya Ara'ujo & Paulo Barbosa, 2023. "Reconstructing cryptocurrency processes via Markov chains," Papers 2308.07626, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    2. Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
    3. Geoffrey Ngene & Ann Nduati Mungai & Allen K. Lynch, 2018. "Long-Term Dependency Structure and Structural Breaks: Evidence from the U.S. Sector Returns and Volatility," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-38, June.
    4. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    5. Tan, Chia-Yen & Koh, You-Beng & Ng, Kok-Haur & Ng, Kooi-Huat, 2021. "Dynamic volatility modelling of Bitcoin using time-varying transition probability Markov-switching GARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    6. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    7. Zouheir Mighri & Raouf Jaziri, 2023. "Long-Memory, Asymmetry and Fat-Tailed GARCH Models in Value-at-Risk Estimation: Empirical Evidence from the Global Real Estate Markets," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 41-97, March.
    8. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    9. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022. "On the volatility of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 62(C).
    10. Onder Buberkoku, 2018. "Examining the Value-at-risk Performance of Fractionally Integrated GARCH Models: Evidence from Energy Commodities," International Journal of Economics and Financial Issues, Econjournals, vol. 8(3), pages 36-50.
    11. Walid Chkili, 2021. "Modeling Bitcoin price volatility: long memory vs Markov switching," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 433-448, September.
    12. Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
    13. David G. McMillan & Pako Thupayagale, 2009. "The efficiency of African equity markets," Studies in Economics and Finance, Emerald Group Publishing Limited, vol. 26(4), pages 275-292, October.
    14. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    15. Assaf, Ata & Bhandari, Avishek & Charif, Husni & Demir, Ender, 2022. "Multivariate long memory structure in the cryptocurrency market: The impact of COVID-19," International Review of Financial Analysis, Elsevier, vol. 82(C).
    16. Dean Fantazzini & Stephan Zimin, 2020. "A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 19-69, March.
    17. Walther, Thomas & Klein, Tony & Thu, Hien Pham & Piontek, Krzysztof, 2017. "True or spurious long memory in European non-EMU currencies," Research in International Business and Finance, Elsevier, vol. 40(C), pages 217-230.
    18. López-Martín, Carmen & Arguedas-Sanz, Raquel & Muela, Sonia Benito, 2022. "A cryptocurrency empirical study focused on evaluating their distribution functions," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 387-407.
    19. Walther, Thomas & Klein, Tony & Bouri, Elie, 2019. "Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
    20. Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:13:y:2020:i:6:p:107-:d:364466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.