Value-at-risk and related measures for the Bitcoin
Author
Abstract
Suggested Citation
DOI: 10.1108/JRF-07-2017-0115
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022.
"On the volatility of cryptocurrencies,"
Research in International Business and Finance, Elsevier, vol. 62(C).
- Thanasis Stengos & Theodore Panagiotidis & Georgios Papapanagiotou, 2022. "On the volatility of cryptocurrencies," Working Papers 2202, University of Guelph, Department of Economics and Finance.
- Daniel Tut, 2022.
"Bitcoin: Future or Fad?,"
Springer Books, in: Thomas Walker & Frederick Davis & Tyler Schwartz (ed.), Big Data in Finance, pages 133-157,
Springer.
- Tut, Daniel, 2022. "Bitcoin: Future or Fad?," MPRA Paper 112376, University Library of Munich, Germany.
- Andrei-Dragos Popescu, 2021. "Assessing Portfolio Risks Involving Bitcoin and Ethereum Using Vector Autoregressive Model," Ovidius University Annals, Economic Sciences Series, Ovidius University of Constantza, Faculty of Economic Sciences, vol. 0(2), pages 1101-1109, December.
- Mawuli Segnon & Stelios Bekiros, 2020. "Forecasting volatility in bitcoin market," Annals of Finance, Springer, vol. 16(3), pages 435-462, September.
- Pınar Kaya Soylu & Mustafa Okur & Özgür Çatıkkaş & Z. Ayca Altintig, 2020. "Long Memory in the Volatility of Selected Cryptocurrencies: Bitcoin, Ethereum and Ripple," JRFM, MDPI, vol. 13(6), pages 1-21, May.
- Tut, DANIEL, 2024. "Bitcoin, speculative sentiments and crypto-assets valuation," MPRA Paper 120866, University Library of Munich, Germany.
- Zouheir Mighri & Raouf Jaziri, 2023. "Long-Memory, Asymmetry and Fat-Tailed GARCH Models in Value-at-Risk Estimation: Empirical Evidence from the Global Real Estate Markets," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 41-97, March.
- Aharon, David Y. & Butt, Hassan Anjum & Jaffri, Ali & Nichols, Brian, 2023. "Asymmetric volatility in the cryptocurrency market: New evidence from models with structural breaks," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Fakhfekh, Mohamed & Jeribi, Ahmed, 2020. "Volatility dynamics of crypto-currencies’ returns: Evidence from asymmetric and long memory GARCH models," Research in International Business and Finance, Elsevier, vol. 51(C).
- Ilhami KARAHANOGLU, 2020. "The VaR comparison of the fresh investment toolBITCOIN with other conventional investment tools, gold, stock exchange (BIST100) and foreign currencies (EUR/USD VS TRL)," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 11, pages 160-181, December.
- Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
- Esfandiar Maasoumi & Xi Wu, 2021. "Contrasting Cryptocurrencies with Other Assets: Full Distributions and the COVID Impact," JRFM, MDPI, vol. 14(9), pages 1-15, September.
- Dean Fantazzini & Stephan Zimin, 2020.
"A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies,"
Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 47(1), pages 19-69, March.
- Fantazzini, Dean & Zimin, Stephan, 2019. "A multivariate approach for the simultaneous modelling of market risk and credit risk for cryptocurrencies," MPRA Paper 95988, University Library of Munich, Germany.
- Leopoldo Catania & Mads Sandholdt, 2019. "Bitcoin at High Frequency," JRFM, MDPI, vol. 12(1), pages 1-20, February.
- Patra, Saswat, 2021. "Revisiting value-at-risk and expected shortfall in oil markets under structural breaks: The role of fat-tailed distributions," Energy Economics, Elsevier, vol. 101(C).
- Branimir Cvitko Cicvarić, 2020. "Volatility of Cryptocurrencies," Notitia - journal for economic, business and social issues, Notitia Ltd., vol. 1(6), pages 13-23, December.
- Bedi, Prateek & Nashier, Tripti, 2020. "On the investment credentials of Bitcoin: A cross-currency perspective," Research in International Business and Finance, Elsevier, vol. 51(C).
- Acereda, Beatriz & Leon, Angel & Mora, Juan, 2020. "Estimating the expected shortfall of cryptocurrencies: An evaluation based on backtesting," Finance Research Letters, Elsevier, vol. 33(C).
- Enilov, Martin & Mensi, Walid & Stankov, Petar, 2023. "Does safe haven exist? Tail risks of commodity markets during COVID-19 pandemic," Journal of Commodity Markets, Elsevier, vol. 29(C).
- Roy Cerqueti & Massimiliano Giacalone & Raffaele Mattera, 2020. "Skewed non-Gaussian GARCH models for cryptocurrencies volatility modelling," Papers 2004.11674, arXiv.org.
- Achraf Ghorbel & Ahmed Jeribi, 2021. "Investigating the relationship between volatilities of cryptocurrencies and other financial assets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 817-843, December.
- Duygu Ider & Stefan Lessmann, 2022. "Forecasting Cryptocurrency Returns from Sentiment Signals: An Analysis of BERT Classifiers and Weak Supervision," Papers 2204.05781, arXiv.org, revised Mar 2023.
- Gao, Lingbo & Ye, Wuyi & Guo, Ranran, 2022. "Jointly forecasting the value-at-risk and expected shortfall of Bitcoin with a regime-switching CAViaR model," Finance Research Letters, Elsevier, vol. 48(C).
- Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.
- Klarin, Anton, 2020. "The decade-long cryptocurrencies and the blockchain rollercoaster: Mapping the intellectual structure and charting future directions," Research in International Business and Finance, Elsevier, vol. 51(C).
More about this item
Keywords
Value-at-risk; Bitcoin; GJR-GARCH model; Expected shortfall; Pearson type-IV distribution; Regulatory loss functions;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eme:jrfpps:jrf-07-2017-0115. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emerald Support (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.