IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/304.html
   My bibliography  Save this paper

Long and short memory conditional heteroskedasticity in estimating the memory parameter of levels

Author

Listed:
  • Robinson, Peter M.
  • Henry, M.

Abstract

Semiparametric estimates of long memory seem useful in the analysis of long financial time series because they are consistent under much broader conditions than parametric estimates. However, recent large sample theory for semiparametric estimates forbids conditional heteroskedasticity. We show that a leading semiparametric estimate, the Gaussian or local Whittle one, can be consistent and have the same limiting distribution under conditional heteroskedasticity as under the conditional homoskedasticity assumed by Robinson (1995, Annals of Statistics 23, 1630–61). Indeed, noting that long memory has been observed in the squares of financial time series, we allow, under regularity conditions, for conditional heteroskedasticity of the general form introduced by Robinson (1991, Journal of Econometrics 47, 67–84), which may include long memory behavior for the squares, such as the fractional noise and autoregressive fractionally integrated moving average form, and also standard short memory ARCH and GARCH specifications.

Suggested Citation

  • Robinson, Peter M. & Henry, M., 1999. "Long and short memory conditional heteroskedasticity in estimating the memory parameter of levels," LSE Research Online Documents on Economics 304, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:304
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/304/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606.
    2. Robinson, P. M., 1991. "Testing for strong serial correlation and dynamic conditional heteroskedasticity in multiple regression," Journal of Econometrics, Elsevier, vol. 47(1), pages 67-84, January.
    3. Ignacio N. Lobato & Peter M. Robinson, 1998. "A Nonparametric Test for I(0)," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 475-495.
    4. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    5. Guido M. Kuersteiner, 1999. "Efficiency IV Estimation for Autoregressive Models with Conditional Heterogeneity," Working papers 99-08, Massachusetts Institute of Technology (MIT), Department of Economics.
    6. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
    9. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(1), pages 107-131, April.
    10. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marc Henry & Peter M Robinson, 1998. "Long and Short Memory Conditional Heteroscedasticity in Estimating the Memory Parameter of Levels - (Now published in Econometric Theory, 15 (1999), pp.299-336.)," STICERD - Econometrics Paper Series 357, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    2. TEYSSIERE, Gilles, 2003. "Interaction models for common long-range dependence in asset price volatilities," LIDAM Discussion Papers CORE 2003026, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.
    4. Kirman, Alan & Teyssiere, Gilles, 2005. "Testing for bubbles and change-points," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 765-799, April.
    5. Liudas Giraitis & Peter M Robinson, 2001. "Parametric Estimation under Long-Range Dependence," STICERD - Econometrics Paper Series 416, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    6. F. DePenya & L. Gil-Alana, 2006. "Testing of nonstationary cycles in financial time series data," Review of Quantitative Finance and Accounting, Springer, vol. 27(1), pages 47-65, August.
    7. Teyssière, Gilles, 1999. "Modelling exchange rates volatility with multivariate long-memory ARCH processes," SFB 373 Discussion Papers 1999,5, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    8. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911.
    9. Bollerslev, Tim & Ghysels, Eric, 1996. "Periodic Autoregressive Conditional Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(2), pages 139-151, April.
    10. Jonathan Wright, 2002. "Log-Periodogram Estimation Of Long Memory Volatility Dependencies With Conditionally Heavy Tailed Returns," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 397-417.
    11. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    12. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    13. Ranjit Kumar Paul & Bishal Gurung & Sandipan Samanta, 2015. "Analyzing the Effect of Dual Long Memory Process in Forecasting Agricultural Prices in Different Markets of India," International Journal of Empirical Finance, Research Academy of Social Sciences, vol. 4(4), pages 235-249.
    14. Robinson, P. M., 2001. "The memory of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 101(2), pages 195-218, April.
    15. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    16. repec:wyi:journl:002087 is not listed on IDEAS
    17. Christensen, Bent Jesper & Nielsen, Morten Ørregaard & Zhu, Jie, 2010. "Long memory in stock market volatility and the volatility-in-mean effect: The FIEGARCH-M Model," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 460-470, June.
    18. Pan, Qunxing & Li, Peng & Du, Xiuli, 2023. "An improved FIGARCH model with the fractional differencing operator (1-νL)d," Finance Research Letters, Elsevier, vol. 55(PB).
    19. HAFNER, Christian & PREMINGER, Arie, 2016. "On Asymptotic Theory for ARCH(infinite) Models," LIDAM Discussion Papers CORE 2016030, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    21. Charfeddine, Lanouar & Ajmi, Ahdi Noomen, 2013. "The Tunisian stock market index volatility: Long memory vs. switching regime," Emerging Markets Review, Elsevier, vol. 16(C), pages 170-182.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.