IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v50y2018i23p2552-2568.html
   My bibliography  Save this article

Forecasting stock market volatility and information content of implied volatility index

Author

Listed:
  • Pratap Chandra Pati
  • Parama Barai
  • Prabina Rajib

Abstract

This study investigates the incremental information content of implied volatility index relative to the GARCH family models in forecasting volatility of the three Asia-Pacific stock markets, namely India, Australia and Hong Kong. To examine the in-sample information content, the conditional variance equations of GARCH family models are augmented by incorporating implied volatility index as an explanatory variable. The return-based realized variance and the range-based realized variance constructed from 5-min data are used as proxy for latent volatility. To assess the out-of-sample forecast performance, we generate one-day-ahead rolling forecasts and employ the Mincer–Zarnowitz regression and encompassing regression. We find that the inclusion of implied volatility index in the conditional variance equation of GARCH family model reduces volatility persistence and improves model fitness. The significant and positive coefficient of implied volatility index in the augmented GARCH family models suggests that it contains relevant information in describing the volatility process. The study finds that volatility index is a biased forecast but possesses relevant information in explaining future realized volatility. The results of encompassing regression suggest that implied volatility index contains additional information relevant for forecasting stock market volatility beyond the information contained in the GARCH family model forecasts.

Suggested Citation

  • Pratap Chandra Pati & Parama Barai & Prabina Rajib, 2018. "Forecasting stock market volatility and information content of implied volatility index," Applied Economics, Taylor & Francis Journals, vol. 50(23), pages 2552-2568, May.
  • Handle: RePEc:taf:applec:v:50:y:2018:i:23:p:2552-2568
    DOI: 10.1080/00036846.2017.1403557
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2017.1403557
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2017.1403557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fassas, Athanasios P. & Siriopoulos, Costas, 2021. "Implied volatility indices – A review," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 303-329.
    2. Tarek Chebbi & Waleed Hmedat, 2024. "Inventory information arrival and the crude oil futures market," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(2), pages 1513-1533, April.
    3. VDMV Lakshmi & Garima Sisodia & Anto Joseph & Aviral Kumar Tiwari, 2024. "The conditional impact of market conditions, volatility and liquidity shocks on the arbitrage opportunities during pre‐COVID and COVID periods," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 3007-3022, July.
    4. Qiao, Gaoxiu & Teng, Yuxin & Li, Weiping & Liu, Wenwen, 2019. "Improving volatility forecasting based on Chinese volatility index information: Evidence from CSI 300 index and futures markets," The North American Journal of Economics and Finance, Elsevier, vol. 49(C), pages 133-151.
    5. Zhu, Sha & Liu, Qiuhong & Wang, Yan & Wei, Yu & Wei, Guiwu, 2019. "Which fear index matters for predicting US stock market volatilities: Text-counts or option based measurement?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
    6. Mehmet Sahiner, 2022. "Forecasting volatility in Asian financial markets: evidence from recursive and rolling window methods," SN Business & Economics, Springer, vol. 2(10), pages 1-74, October.
    7. Xiao, Jihong & Wen, Fenghua & Zhao, Yupei & Wang, Xiong, 2021. "The role of US implied volatility index in forecasting Chinese stock market volatility: Evidence from HAR models," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 311-333.
    8. Slim, Skander & Dahmene, Meriam & Boughrara, Adel, 2020. "How informative are variance risk premium and implied volatility for Value-at-Risk prediction? International evidence," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 22-37.
    9. Adam Clements & Yin Liao & Yusui Tang, 2022. "Moving beyond Volatility Index (VIX): HARnessing the term structure of implied volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 86-99, January.
    10. Anupam Dutta & Debojyoti Das, 2022. "Forecasting realized volatility: New evidence from time‐varying jumps in VIX," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(12), pages 2165-2189, December.
    11. Pınar Kaya Soylu & Mustafa Okur & Özgür Çatıkkaş & Z. Ayca Altintig, 2020. "Long Memory in the Volatility of Selected Cryptocurrencies: Bitcoin, Ethereum and Ripple," JRFM, MDPI, vol. 13(6), pages 1-21, May.
    12. Choudhary, Sangita & Jain, Anshul & Biswal, Pratap Chandra, 2024. "Dynamic linkages among bitcoin, equity, gold and oil: An implied volatility perspective," Finance Research Letters, Elsevier, vol. 62(PB).
    13. Lamine Diane & Pradeep Brijlal, 2024. "Forecasting Stock Market Realized Volatility using Random Forest and Artificial Neural Network in South Africa," International Journal of Economics and Financial Issues, Econjournals, vol. 14(2), pages 5-14, March.
    14. Lei Ruan, 2018. "Research on Sustainable Development of the Stock Market Based on VIX Index," Sustainability, MDPI, vol. 10(11), pages 1-12, November.
    15. Adekoya, Oluwasegun B. & Ogunbowale, Gideon O. & Akinseye, Ademola B. & Oduyemi, Gabriel O., 2021. "Improving the predictability of stock returns with global financial cycle and oil price in oil-exporting African countries," International Economics, Elsevier, vol. 168(C), pages 166-181.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:50:y:2018:i:23:p:2552-2568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.