IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v38y2022i2p467-488.html
   My bibliography  Save this article

Short-term Covid-19 forecast for latecomers

Author

Listed:
  • Medeiros, Marcelo C.
  • Street, Alexandre
  • Valladão, Davi
  • Vasconcelos, Gabriel
  • Zilberman, Eduardo

Abstract

The number of new Covid-19 cases is still high in several countries, despite vaccination efforts. A number of countries are experiencing new and severe waves of infection. Therefore, the availability of reliable forecasts for the number of cases and deaths in the coming days is of fundamental importance. We propose a simple statistical method for short-term real-time forecasting of the number of Covid-19 cases and fatalities in countries that are latecomers—i.e., countries where cases of the disease started to appear some time after others. In particular, we propose a penalized LASSO regression model with an error correction mechanism to construct a model of a latecomer country in terms of other countries that were at a similar stage of the pandemic some days before. By tracking the number of cases in those countries, we use an adaptive rolling-window scheme to forecast the number of cases and deaths in the latecomer. We apply this methodology to 45 countries and we provide detailed results for four of them: Brazil, Chile, Mexico, and Portugal. We show that the methodology performs very well when compared to alternative methods. These forecasts aim to foster better short-run management of the healthcare system and can be applied not only to countries but also to different regions within a country. Finally, the modeling framework derived in the paper can be applied to other infectious diseases.

Suggested Citation

  • Medeiros, Marcelo C. & Street, Alexandre & Valladão, Davi & Vasconcelos, Gabriel & Zilberman, Eduardo, 2022. "Short-term Covid-19 forecast for latecomers," International Journal of Forecasting, Elsevier, vol. 38(2), pages 467-488.
  • Handle: RePEc:eee:intfor:v:38:y:2022:i:2:p:467-488
    DOI: 10.1016/j.ijforecast.2021.09.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016920702100162X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2021.09.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    2. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    3. Ricardo Masini & Marcelo C. Medeiros, 2021. "Counterfactual Analysis With Artificial Controls: Inference, High Dimensions, and Nonstationarity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1773-1788, October.
    4. Coroneo, Laura & Iacone, Fabrizio & Paccagnini, Alessia & Santos Monteiro, Paulo, 2023. "Testing the predictive accuracy of COVID-19 forecasts," International Journal of Forecasting, Elsevier, vol. 39(2), pages 606-622.
    5. Martin S Eichenbaum & Sergio Rebelo & Mathias Trabandt, 2021. "The Macroeconomics of Epidemics [Economic activity and the spread of viral diseases: Evidence from high frequency data]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5149-5187.
    6. David Berger & Kyle Herkenhoff & Chengdai Huang & Simon Mongey, 2022. "Testing and Reopening in an SEIR Model," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 43, pages 1-21, January.
    7. Jiang, Feiyu & Zhao, Zifeng & Shao, Xiaofeng, 2023. "Time series analysis of COVID-19 infection curve: A change-point perspective," Journal of Econometrics, Elsevier, vol. 232(1), pages 1-17.
    8. Doornik, Jurgen A. & Castle, Jennifer L. & Hendry, David F., 2022. "Short-term forecasting of the coronavirus pandemic," International Journal of Forecasting, Elsevier, vol. 38(2), pages 453-466.
    9. Zeroual, Abdelhafid & Harrou, Fouzi & Dairi, Abdelkader & Sun, Ying, 2020. "Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Petropoulos, Fotios & Makridakis, Spyros & Stylianou, Neophytos, 2022. "COVID-19: Forecasting confirmed cases and deaths with a simple time series model," International Journal of Forecasting, Elsevier, vol. 38(2), pages 439-452.
    11. Li, Shaoran & Linton, Oliver, 2021. "When will the Covid-19 pandemic peak?," Journal of Econometrics, Elsevier, vol. 220(1), pages 130-157.
    12. Andrew Atkeson, 2020. "How Deadly is COVID-19? Understanding the Difficulties with Estimation of its Fatality Rate," Staff Report 598, Federal Reserve Bank of Minneapolis.
    13. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    14. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    15. Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miljana Milić & Jelena Milojković & Miljan Jeremić, 2022. "Optimal Neural Network Model for Short-Term Prediction of Confirmed Cases in the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández-Villaverde, Jesús & Jones, Charles I., 2022. "Estimating and simulating a SIRD Model of COVID-19 for many countries, states, and cities," Journal of Economic Dynamics and Control, Elsevier, vol. 140(C).
    2. David Baqaee & Emmanuel Farhi, 2020. "Nonlinear Production Networks with an Application to the Covid-19 Crisis," NBER Working Papers 27281, National Bureau of Economic Research, Inc.
    3. Daron Acemoglu & Victor Chernozhukov & Iván Werning & Michael D. Whinston, 2021. "Optimal Targeted Lockdowns in a Multigroup SIR Model," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 487-502, December.
    4. Alexander Chudik & M. Hashem Pesaran & Alessandro Rebucci, 2020. "Voluntary and Mandatory Social Distancing: Evidence on COVID-19 Exposure Rates from Chinese Provinces and Selected Countries," Globalization Institute Working Papers 382, Federal Reserve Bank of Dallas.
    5. Korolev, Ivan, 2021. "Identification and estimation of the SEIRD epidemic model for COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 63-85.
    6. Çakmaklı, Cem & Demiralp, Selva & Özcan, Şebnem Kalemli & Yeşiltaş, Sevcan & Yıldırım, Muhammed A., 2023. "COVID-19 and emerging markets: A SIR model, demand shocks and capital flows," Journal of International Economics, Elsevier, vol. 145(C).
    7. V. V. Chari & Rishabh Kirpalani & Christopher Phelan, 2021. "The Hammer and the Scalpel: On the Economics of Indiscriminate versus Targeted Isolation Policies during Pandemics," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 42, pages 1-14, October.
    8. David Baqaee & Emmanuel Farhi, 2022. "Supply and Demand in Disaggregated Keynesian Economies with an Application to the COVID-19 Crisis," American Economic Review, American Economic Association, vol. 112(5), pages 1397-1436, May.
    9. Callum Jones & Thomas Philippon & Venky Venkateswaran, 2021. "Optimal Mitigation Policies in a Pandemic: Social Distancing and Working from Home [A simple planning problem for covid-19 lockdown]," The Review of Financial Studies, Society for Financial Studies, vol. 34(11), pages 5188-5223.
    10. Giagheddu, Marta & Papetti, Andrea, 2023. "The macroeconomics of age-varying epidemics," European Economic Review, Elsevier, vol. 151(C).
    11. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    12. Charles A.E. Goodhart & Dimitrios P. Tsomocos & Xuan Wang, 2023. "Support for small businesses amid COVID‐19," Economica, London School of Economics and Political Science, vol. 90(358), pages 612-652, April.
    13. Graham, James & Ozbilgin, Murat, 2021. "Age, industry, and unemployment risk during a pandemic lockdown," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    14. Louis-Philippe Beland & Abel Brodeur & Taylor Wright, 2020. "COVID-19, Stay-at-Home Orders and Employment: Evidence from CPS Data," Carleton Economic Papers 20-04, Carleton University, Department of Economics, revised 19 May 2020.
    15. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    16. Xiao Chen & Hanwei Huang & Jiandong Ju & Ruoyan Sun & Jialiang Zhang, 2022. "Endogenous cross-region human mobility and pandemics," CEP Discussion Papers dp1860, Centre for Economic Performance, LSE.
    17. Shami, Labib & Lazebnik, Teddy, 2022. "Economic aspects of the detection of new strains in a multi-strain epidemiological–mathematical model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    18. Gopal K. Basak & Chandramauli Chakraborty & Pranab Kumar Das, 2021. "Optimal Lockdown Strategy in a Pandemic: An Exploratory Analysis for Covid-19," Papers 2109.02512, arXiv.org.
    19. Hortaçsu, Ali & Liu, Jiarui & Schwieg, Timothy, 2021. "Estimating the fraction of unreported infections in epidemics with a known epicenter: An application to COVID-19," Journal of Econometrics, Elsevier, vol. 220(1), pages 106-129.
    20. Joshua Bernstein & Alexander W. Richter & Nathaniel A. Throckmorton, 2020. "COVID-19: A View from the Labor Market," Working Papers 2010, Federal Reserve Bank of Dallas.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:38:y:2022:i:2:p:467-488. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.