IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v140y2020ics0960077920305695.html
   My bibliography  Save this article

A mathematical model for COVID-19 transmission dynamics with a case study of India

Author

Listed:
  • Samui, Piu
  • Mondal, Jayanta
  • Khajanchi, Subhas

Abstract

The ongoing COVID-19 has precipitated a major global crisis, with 968,117 total confirmed cases, 612,782 total recovered cases and 24,915 deaths in India as of July 15, 2020. In absence of any effective therapeutics or drugs and with an unknown epidemiological life cycle, predictive mathematical models can aid in understanding of both coronavirus disease control and management. In this study, we propose a compartmental mathematical model to predict and control the transmission dynamics of COVID-19 pandemic in India with epidemic data up to April 30, 2020. We compute the basic reproduction number R0, which will be used further to study the model simulations and predictions. We perform local and global stability analysis for the infection free equilibrium point E0 as well as an endemic equilibrium point E* with respect to the basic reproduction number R0. Moreover, we showed the criteria of disease persistence for R0 > 1. We conduct a sensitivity analysis in our coronavirus model to determine the relative importance of model parameters to disease transmission. We compute the sensitivity indices of the reproduction number R0 (which quantifies initial disease transmission) to the estimated parameter values. For the estimated model parameters, we obtained R0=1.6632, which shows the substantial outbreak of COVID-19 in India. Our model simulation demonstrates that the disease transmission rate βs is more effective to mitigate the basic reproduction number R0. Based on estimated data, our model predict that about 60 days the peak will be higher for COVID-19 in India and after that the curve will plateau but the coronavirus diseases will persist for a long time.

Suggested Citation

  • Samui, Piu & Mondal, Jayanta & Khajanchi, Subhas, 2020. "A mathematical model for COVID-19 transmission dynamics with a case study of India," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
  • Handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305695
    DOI: 10.1016/j.chaos.2020.110173
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920305695
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110173?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khajanchi, Subhas & Das, Dhiraj Kumar & Kar, Tapan Kumar, 2018. "Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 52-71.
    2. Atangana, Abdon, 2020. "Modelling the spread of COVID-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shruti Sharma & Yogesh Kumar Gupta & Abhinava K. Mishra, 2023. "Analysis and Prediction of COVID-19 Multivariate Data Using Deep Ensemble Learning Methods," IJERPH, MDPI, vol. 20(11), pages 1-23, May.
    2. Alexander Domoshnitsky & Alexander Sitkin & Lea Zuckerman, 2022. "Mathematical Modeling of COVID-19 Transmission in the Form of System of Integro-Differential Equations," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    3. Lina Sonne Vyas & Maren Duvendack, 2024. "The resilience of systems‐thinking approaches when faced with an evolving crisis: The case of Mumbai," Development Policy Review, Overseas Development Institute, vol. 42(3), May.
    4. Matouk, A.E., 2020. "Complex dynamics in susceptible-infected models for COVID-19 with multi-drug resistance," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Sonja Jäckle & Elias Röger & Volker Dicken & Benjamin Geisler & Jakob Schumacher & Max Westphal, 2021. "A Statistical Model to Assess Risk for Supporting COVID-19 Quarantine Decisions," IJERPH, MDPI, vol. 18(17), pages 1-13, August.
    6. Prem Kumar, R. & Santra, P.K. & Mahapatra, G.S., 2023. "Global stability and analysing the sensitivity of parameters of a multiple-susceptible population model of SARS-CoV-2 emphasising vaccination drive," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 741-766.
    7. Chatterjee, Amar Nath & Ahmad, Bashir, 2021. "A fractional-order differential equation model of COVID-19 infection of epithelial cells," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    8. Sharma, Natasha & Verma, Atul Kumar & Gupta, Arvind Kumar, 2021. "Spatial network based model forecasting transmission and control of COVID-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    9. Amar Nath Chatterjee & Fahad Al Basir & Bashir Ahmad & Ahmed Alsaedi, 2022. "A Fractional-Order Compartmental Model of Vaccination for COVID-19 with the Fear Factor," Mathematics, MDPI, vol. 10(9), pages 1-15, April.
    10. Talal Daghriri & Michael Proctor & Sarah Matthews, 2022. "Evolution of Select Epidemiological Modeling and the Rise of Population Sentiment Analysis: A Literature Review and COVID-19 Sentiment Illustration," IJERPH, MDPI, vol. 19(6), pages 1-20, March.
    11. Huda Abdul Satar & Raid Kamel Naji, 2023. "A Mathematical Study for the Transmission of Coronavirus Disease," Mathematics, MDPI, vol. 11(10), pages 1-20, May.
    12. Hongfei Xiao & Deqin Lin & Shiyu Li, 2023. "Novel Method for Estimating Time-Varying COVID-19 Transmission Rate," Mathematics, MDPI, vol. 11(10), pages 1-18, May.
    13. Cunwei Yang & Weiqing Wang & Fengying Li & Degang Yang, 2022. "One-Size-Fits-All Policies Are Unacceptable: A Sustainable Management and Decision-Making Model for Schools in the Post-COVID-19 Era," IJERPH, MDPI, vol. 19(10), pages 1-21, May.
    14. Ghazal, Ikram & Rachadi, Abdeljalil & Ez-Zahraouy, Hamid, 2022. "Optimal allocation strategies for prioritized geographical vaccination for Covid-19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    15. Bera, Sovan & Khajanchi, Subhas & Roy, Tapan Kumar, 2022. "Dynamics of an HTLV-I infection model with delayed CTLs immune response," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    16. Zhang, Zhenzhen & Ma, Xia & Zhang, Yongxin & Sun, Guiquan & Zhang, Zi-Ke, 2023. "Identifying critical driving factors for human brucellosis in Inner Mongolia, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    17. Sheikh Safiullah & Asadur Rahman & Shameem Ahmad Lone & S. M. Suhail Hussain & Taha Selim Ustun, 2022. "Novel COVID-19 Based Optimization Algorithm (C-19BOA) for Performance Improvement of Power Systems," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    18. El-Mesady, A. & Elsonbaty, Amr & Adel, Waleed, 2022. "On nonlinear dynamics of a fractional order monkeypox virus model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    19. Han, Lili & Song, Sha & Pan, Qiuhui & He, Mingfeng, 2023. "The impact of multiple population-wide testing and social distancing on the transmission of an infectious disease," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Asamoah, Joshua Kiddy K. & Okyere, Eric & Yankson, Ernest & Opoku, Alex Akwasi & Adom-Konadu, Agnes & Acheampong, Edward & Arthur, Yarhands Dissou, 2022. "Non-fractional and fractional mathematical analysis and simulations for Q fever," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Muhammad, Yasir & Khan, Nusrat & Awan, Saeed Ehsan & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Kiani, Adiqa Kausar & Ullah, Farman & Shu, Chi-Min, 2022. "Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    3. Fatima Sulayman & Farah Aini Abdullah & Mohd Hafiz Mohd, 2021. "An SVEIRE Model of Tuberculosis to Assess the Effect of an Imperfect Vaccine and Other Exogenous Factors," Mathematics, MDPI, vol. 9(4), pages 1-23, February.
    4. Rahman, Mati ur & Arfan, Muhammad & Shah, Kamal & Gómez-Aguilar, J.F., 2020. "Investigating a nonlinear dynamical model of COVID-19 disease under fuzzy caputo, random and ABC fractional order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Rastko Jovanović & Miloš Davidović & Ivan Lazović & Maja Jovanović & Milena Jovašević-Stojanović, 2021. "Modelling Voluntary General Population Vaccination Strategies during COVID-19 Outbreak: Influence of Disease Prevalence," IJERPH, MDPI, vol. 18(12), pages 1-18, June.
    6. Chaudhary, Naveed Ishtiaq & Raja, Muhammad Asif Zahoor & Khan, Zeshan Aslam & Mehmood, Ammara & Shah, Syed Muslim, 2022. "Design of fractional hierarchical gradient descent algorithm for parameter estimation of nonlinear control autoregressive systems," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    7. Ahmad, Shabir & Ullah, Aman & Arfan, Muhammad & Shah, Kamal, 2020. "On analysis of the fractional mathematical model of rotavirus epidemic with the effects of breastfeeding and vaccination under Atangana-Baleanu (AB) derivative," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Kumar, Sachin & Cao, Jinde & Abdel-Aty, Mahmoud, 2020. "A novel mathematical approach of COVID-19 with non-singular fractional derivative," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    9. Majee, Suvankar & Jana, Soovoojeet & Das, Dhiraj Kumar & Kar, T.K., 2022. "Global dynamics of a fractional-order HFMD model incorporating optimal treatment and stochastic stability," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    10. Ghanbari, Behzad, 2020. "On forecasting the spread of the COVID-19 in Iran: The second wave," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    11. Chatterjee, Amar Nath & Ahmad, Bashir, 2021. "A fractional-order differential equation model of COVID-19 infection of epithelial cells," Chaos, Solitons & Fractals, Elsevier, vol. 147(C).
    12. Farman, Muhammad & Sarwar, Rabia & Akgul, Ali, 2023. "Modeling and analysis of sustainable approach for dynamics of infections in plant virus with fractal fractional operator," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    13. Bera, Sovan & Khajanchi, Subhas & Roy, Tapan Kumar, 2022. "Dynamics of an HTLV-I infection model with delayed CTLs immune response," Applied Mathematics and Computation, Elsevier, vol. 430(C).
    14. Cardoso, Lislaine Cristina & Camargo, Rubens Figueiredo & dos Santos, Fernando Luiz Pio & Dos Santos, José Paulo Carvalho, 2021. "Global stability analysis of a fractional differential system in hepatitis B," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    15. Idris Ahmed & Chanakarn Kiataramkul & Mubarak Muhammad & Jessada Tariboon, 2024. "Existence and Sensitivity Analysis of a Caputo Fractional-Order Diphtheria Epidemic Model," Mathematics, MDPI, vol. 12(13), pages 1-18, June.
    16. Thomas, Neenu & Jana, Arnab & Bandyopadhyay, Santanu, 2022. "Physical distancing on public transport in Mumbai, India: Policy and planning implications for unlock and post-pandemic period," Transport Policy, Elsevier, vol. 116(C), pages 217-236.
    17. Ravi Kanth, A.S.V. & Devi, Sangeeta, 2022. "A computational approach for numerical simulations of the fractal–fractional autoimmune disease model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    18. Babu, N. Ramesh & Balasubramaniam, P., 2022. "Master-slave synchronization of a new fractal-fractional order quaternion-valued neural networks with time-varying delays," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    19. Yi-Tui Chen & Yung-Feng Yen & Shih-Heng Yu & Emily Chia-Yu Su, 2020. "A Flexible Lockdown by Integrating Public Health and Economic Reactivation to Response the Crisis of COVID-19: Responses to Comments by Alvaro J Idrovo on “An Examination on the Transmission of COVID-," IJERPH, MDPI, vol. 17(21), pages 1-4, November.
    20. Din, Anwarud & Li, Yongjin & Khan, Tahir & Zaman, Gul, 2020. "Mathematical analysis of spread and control of the novel corona virus (COVID-19) in China," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:140:y:2020:i:c:s0960077920305695. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.