IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i7p4180-d784694.html
   My bibliography  Save this article

Assessing Vegetation Ecosystem Resistance to Drought in the Middle Reaches of the Yellow River Basin, China

Author

Listed:
  • Xiaoliang Shi

    (College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Fei Chen

    (College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Hao Ding

    (College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Mengqi Shi

    (College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Yi Li

    (College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China)

Abstract

The frequency and intensity of droughts are increasing in many parts of the world as a result of global climate change and human activity, posing a serious threat to regional ecological security. The climate in the middle reaches of the Yellow River Basin (MRYRB) has been warm and dry in recent years, with frequent droughts. In order to investigate the temporal trend of drought, and reveal the resistance of vegetation to drought in the MRYRB, this study used remotely-sensed vegetation index products (MODIS-NDVI and SPOT-NDVI) and the standardized precipitation evapotranspiration index (SPEI). The results indicated that: (1) drought intensity showed a weak upward trend in the study area from 2000 to 2018, with linear growth rates of SPEI at temporal scales of 1, 3, 6, 9 and 12 months of −0.002, 0.0034, 0.0198, 0.0234, and 0.0249, respectively; (2) drought was positively correlated with vegetation in most areas (97.6%), and vegetation was most affected by drought on long-term time scales (9 and 12 months); (3) with the extension of drought, vegetation resistance index decreased, then gradually recovered after the end of the drought. Forest had the longest resistance duration of 260 days, while grassland and cultivated land had resistance durations of only 170 days. This study adds to the understanding of vegetation’s ability to withstand drought, and these findings provide evidence to support drought response in the MRYRB.

Suggested Citation

  • Xiaoliang Shi & Fei Chen & Hao Ding & Mengqi Shi & Yi Li, 2022. "Assessing Vegetation Ecosystem Resistance to Drought in the Middle Reaches of the Yellow River Basin, China," IJERPH, MDPI, vol. 19(7), pages 1-16, March.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:7:p:4180-:d:784694
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/7/4180/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/7/4180/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aiguo Dai, 2011. "Drought under global warming: a review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(1), pages 45-65, January.
    2. Joseph M. Craine & Troy W. Ocheltree & Jesse B. Nippert & E. Gene Towne & Adam M. Skibbe & Steven W. Kembel & Joseph E. Fargione, 2013. "Global diversity of drought tolerance and grassland climate-change resilience," Nature Climate Change, Nature, vol. 3(1), pages 63-67, January.
    3. Jun Yin & Zhe Yuan & Ting Li, 2021. "The Spatial-Temporal Variation Characteristics of Natural Vegetation Drought in the Yangtze River Source Region, China," IJERPH, MDPI, vol. 18(4), pages 1-24, February.
    4. Forest Isbell & Dylan Craven & John Connolly & Michel Loreau & Bernhard Schmid & Carl Beierkuhnlein & T. Martijn Bezemer & Catherine Bonin & Helge Bruelheide & Enrica de Luca & Anne Ebeling & John N. , 2015. "Biodiversity increases the resistance of ecosystem productivity to climate extremes," Nature, Nature, vol. 526(7574), pages 574-577, October.
    5. Christopher R. Schwalm & William R. L. Anderegg & Anna M. Michalak & Joshua B. Fisher & Franco Biondi & George Koch & Marcy Litvak & Kiona Ogle & John D. Shaw & Adam Wolf & Deborah N. Huntzinger & Kev, 2017. "Global patterns of drought recovery," Nature, Nature, vol. 548(7666), pages 202-205, August.
    6. Tim Newbold & Lawrence N. Hudson & Samantha L. L. Hill & Sara Contu & Igor Lysenko & Rebecca A. Senior & Luca Börger & Dominic J. Bennett & Argyrios Choimes & Ben Collen & Julie Day & Adriana De Palma, 2015. "Global effects of land use on local terrestrial biodiversity," Nature, Nature, vol. 520(7545), pages 45-50, April.
    7. Zheng Li & Tao Zhou & Xiang Zhao & Kaicheng Huang & Shan Gao & Hao Wu & Hui Luo, 2015. "Assessments of Drought Impacts on Vegetation in China with the Optimal Time Scales of the Climatic Drought Index," IJERPH, MDPI, vol. 12(7), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang Chen & Mingxiang Yang & Xuan Liu & Xing Lu, 2022. "Attribution and Sensitivity Analysis of Runoff Variation in the Yellow River Basin under Climate Change," Sustainability, MDPI, vol. 14(22), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhan, Cun & Liang, Chuan & Zhao, Lu & Jiang, Shouzheng & Niu, Kaijie & Zhang, Yaling, 2023. "Multifractal characteristics of multiscale drought in the Yellow River Basin, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    2. Seixas, Hugo Tameirão & Brunsell, Nathaniel A. & Moraes, Elisabete Caria & de Oliveira, Gabriel & Mataveli, Guilherme, 2022. "Exploring the ecosystem resilience concept with land surface model scenarios," Ecological Modelling, Elsevier, vol. 464(C).
    3. Jie Lu & Fengqin Yan, 2023. "The Divergent Resistance and Resilience of Forest and Grassland Ecosystems to Extreme Summer Drought in Carbon Sequestration," Land, MDPI, vol. 12(9), pages 1-17, August.
    4. Yuxin Qi & Yuandong Hu, 2024. "Spatiotemporal Variation and Driving Factors Analysis of Habitat Quality: A Case Study in Harbin, China," Land, MDPI, vol. 13(1), pages 1-21, January.
    5. Yutong Zhang & Wei Zhou & Danxue Luo, 2023. "The Relationship Research between Biodiversity Conservation and Economic Growth: From Multi-Level Attempts to Key Development," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    6. Law, Elizabeth A. & Macchi, Leandro & Baumann, Matthias & Decarre, Julieta & Gavier-Pizarro, Gregorio & Levers, Christian & Mastrangelo, Matías E. & Murray, Francisco & Müller, Daniel & Piquer-Rodrígu, 2021. "Fading opportunities for mitigating agriculture-environment trade-offs in a south American deforestation hotspot," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 262.
    7. Mohamed Fomba & Zinash Delebo Osunde & Souleymane Sidi Traoré & Appollonia Okhimamhe & Janina Kleemann & Christine Fürst, 2024. "Urban Green Spaces in Bamako and Sikasso, Mali: Land Use Changes and Perceptions," Land, MDPI, vol. 13(1), pages 1-20, January.
    8. Yanqun Ren & Jinping Liu & Patrick Willems & Tie Liu & Quoc Bao Pham, 2023. "Detection and Assessment of Changing Drought Events in China in the Context of Climate Change Based on the Intensity–Area–Duration Algorithm," Land, MDPI, vol. 12(10), pages 1-18, September.
    9. Baldini, Carolina & Marasas, Mariana Edith & Tittonell, Pablo & Drozd, Andrea Alejandra, 2022. "Urban, periurban and horticultural landscapes – Conflict and sustainable planning in La Plata district, Argentina," Land Use Policy, Elsevier, vol. 117(C).
    10. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    11. Luong, Tuan Anh & Nguyen, Manh-Hung & Truong, N.T. Khuong & Le, Kien, 2023. "Rainfall variability and internal migration: The importance of agriculture linkage and gender inequality," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 326-336.
    12. Qiaoyin Zhang & Yan Wu & Zhiqiang Zhao, 2024. "Identification of Harbin Ecological Function Degradation Areas Based on Ecological Importance Assessment and Ecological Sensitivity," Sustainability, MDPI, vol. 16(16), pages 1-17, August.
    13. Qian Zuo & Yong Zhou & Jingyi Liu, 2022. "Construction and Optimization Strategy of an Ecological Network in Mountainous Areas: A Case Study in Southwestern Hubei Province, China," IJERPH, MDPI, vol. 19(15), pages 1-27, August.
    14. Getachew Tegegne & Assefa M. Melesse, 2020. "Multimodel Ensemble Projection of Hydro-climatic Extremes for Climate Change Impact Assessment on Water Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(9), pages 3019-3035, July.
    15. Ziqi Meng & Jinwei Dong & Erle C. Ellis & Graciela Metternicht & Yuanwei Qin & Xiao-Peng Song & Sara Löfqvist & Rachael D. Garrett & Xiaopeng Jia & Xiangming Xiao, 2023. "Post-2020 biodiversity framework challenged by cropland expansion in protected areas," Nature Sustainability, Nature, vol. 6(7), pages 758-768, July.
    16. Wang, Fei & Lai, Hexin & Li, Yanbin & Feng, Kai & Zhang, Zezhong & Tian, Qingqing & Zhu, Xiaomeng & Yang, Haibo, 2022. "Dynamic variation of meteorological drought and its relationships with agricultural drought across China," Agricultural Water Management, Elsevier, vol. 261(C).
    17. Shahzada Adnan & Kalim Ullah, 2020. "Development of drought hazard index for vulnerability assessment in Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2989-3010, September.
    18. Guangdong Li & Chuanglin Fang & James E. M. Watson & Siao Sun & Wei Qi & Zhenbo Wang & Jianguo Liu, 2024. "Mixed effectiveness of global protected areas in resisting habitat loss," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    19. Sarah R. Weiskopf & Forest Isbell & Maria Isabel Arce-Plata & Moreno Di Marco & Mike Harfoot & Justin Johnson & Susannah B. Lerman & Brian W. Miller & Toni Lyn Morelli & Akira S. Mori & Ensheng Weng &, 2024. "Biodiversity loss reduces global terrestrial carbon storage," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    20. Shuangshuang Liu & Qipeng Liao & Mingzhu Xiao & Dengyue Zhao & Chunbo Huang, 2022. "Spatial and Temporal Variations of Habitat Quality and Its Response of Landscape Dynamic in the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 19(6), pages 1-20, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:7:p:4180-:d:784694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.