IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i4d10.1007_s10668-020-00805-y.html
   My bibliography  Save this article

Quantification of drought severity change in Ethiopia during 1952–2017

Author

Listed:
  • Ashenafi Yimam Kassaye

    (Hohai University)

  • Guangcheng Shao

    (Hohai University)

  • Xiaojun Wang

    (Nanjing Hydraulic Research Institute
    Ministry of Water Resources)

  • Shiqing Wu

    (Hohai University)

Abstract

Drought is considered as a frequent environmental disaster that persists long enough to adversely influence economic and social development for the last few decades, particularly in Ethiopia. Here, we examined the occurrence of drought severity change in Ethiopia using standardized precipitation index (SPI), standardized precipitation evapotranspiration index (SPEI), China Z Index (CZI) and percent of normal precipitation (PNP). Mann Kendal and Sen’s method tests also used to compute trends and magnitudes of drought occurrences. The years 1953, 1961–1964, 1972–1976, 1984–1987, 2002–2004 and 2011–2014 were recorded as the most intense drought episodes ranging from − 1.58 to − 4.31. With some exceptions, the years 1984, 1986, 2002 and 2014/15 were the direst extreme drought occurrence across all locations. The interpolated spatial extent of drought frequency was highest in central, north and southern regions of the country, respectively. More extreme and severe droughts are identified from SPI and SPEI time series than CZI and PNP at many stations across the domain. In 3-month time scales, severe/extreme drought incidences are intra-annual and 12- and 24-month time scales are inter-annual. SPI and SPEI have stronger correlation than SPI and CZI at all timescales. This kind of inventory drought characterization can be used as a basis to quantitatively prioritize specific intervention at the regional level in responding to drought impacts due to climate change with available resources. By large, it will help to foster a vital shift in the way drought is perceived and coped in the region, taking into account the country’s economic, social and environmental context.

Suggested Citation

  • Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00805-y
    DOI: 10.1007/s10668-020-00805-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00805-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00805-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
    2. Justin Sheffield & Eric F. Wood & Michael L. Roderick, 2012. "Little change in global drought over the past 60 years," Nature, Nature, vol. 491(7424), pages 435-438, November.
    3. Aiguo Dai, 2011. "Drought under global warming: a review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(1), pages 45-65, January.
    4. Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
    5. Qiang Zhang & Tianyao Qi & Vijay Singh & Yongqin Chen & Mingzhong Xiao, 2015. "Regional Frequency Analysis of Droughts in China: A Multivariate Perspective," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 1767-1787, April.
    6. Brunella Bonaccorso & David Peres & Antonino Cancelliere & Giuseppe Rossi, 2013. "Large Scale Probabilistic Drought Characterization Over Europe," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(6), pages 1675-1692, April.
    7. Block, P. J., 2008. "Mitigating the effects of hydrologic variability in Ethiopia: an assessment of investments in agricultural and transportation infrastructure, energy and hydroclimatic forecasting," IWMI Working Papers H042798, International Water Management Institute.
    8. Desalegn Edossa & Mukand Babel & Ashim Das Gupta, 2010. "Drought Analysis in the Awash River Basin, Ethiopia," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(7), pages 1441-1460, May.
    9. Peter Little & M. Priscilla Stone & Tewodaj Mogues & A. Peter Castro & Workneh Negatu, 2006. "'Moving in place': Drought and poverty dynamics in South Wollo, Ethiopia," Journal of Development Studies, Taylor & Francis Journals, vol. 42(2), pages 200-225.
    10. Elisabeth Meze-Hausken, 2000. "Migration caused by climate change: how vulnerable are people inn dryland areas?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 5(4), pages 379-406, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jale Amanuel Dufera & Tewodros Addisu Yate & Tadesse Tujuba Kenea, 2023. "Spatiotemporal analysis of drought in Oromia regional state of Ethiopia over the period 1989 to 2019," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1569-1609, June.
    2. Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
    3. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    4. L. Lin & A. Gettelman & Q. Fu & Y. Xu, 2018. "Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols," Climatic Change, Springer, vol. 146(3), pages 407-422, February.
    5. Sergio M. Vicente-Serrano & Miquel Tomas-Burguera & Santiago Beguería & Fergus Reig & Borja Latorre & Marina Peña-Gallardo & M. Yolanda Luna & Ana Morata & José C. González-Hidalgo, 2017. "A High Resolution Dataset of Drought Indices for Spain," Data, MDPI, vol. 2(3), pages 1-10, June.
    6. Zheng Li & Tao Zhou & Xiang Zhao & Kaicheng Huang & Shan Gao & Hao Wu & Hui Luo, 2015. "Assessments of Drought Impacts on Vegetation in China with the Optimal Time Scales of the Climatic Drought Index," IJERPH, MDPI, vol. 12(7), pages 1-20, July.
    7. Jianzhi Dong & Fangni Lei & Wade T. Crow, 2022. "Land transpiration-evaporation partitioning errors responsible for modeled summertime warm bias in the central United States," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    8. Xu, Zhenheng & Sun, Hao & Zhang, Tian & Xu, Huanyu & Wu, Dan & Gao, JinHua, 2023. "Evaluating established deep learning methods in constructing integrated remote sensing drought index: A case study in China," Agricultural Water Management, Elsevier, vol. 286(C).
    9. Gregory McCabe & David Wolock, 2015. "Increasing Northern Hemisphere water deficit," Climatic Change, Springer, vol. 132(2), pages 237-249, September.
    10. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    11. Lei Zou & Jun Xia & Dunxian She, 2018. "Analysis of Impacts of Climate Change and Human Activities on Hydrological Drought: a Case Study in the Wei River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1421-1438, March.
    12. Huynh, Thanh D. & Nguyen, Thu Ha & Truong, Cameron, 2020. "Climate risk: The price of drought," Journal of Corporate Finance, Elsevier, vol. 65(C).
    13. Ruiwen Zhang & Chengyi Zhao & Xiaofei Ma & Karthikeyan Brindha & Qifei Han & Chaofan Li & Xiaoning Zhao, 2019. "Projected Spatiotemporal Dynamics of Drought under Global Warming in Central Asia," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
    14. Julia S. Stoyanova & Christo G. Georgiev & Plamen N. Neytchev, 2023. "Drought Monitoring in Terms of Evapotranspiration Based on Satellite Data from Meteosat in Areas of Strong Land–Atmosphere Coupling," Land, MDPI, vol. 12(1), pages 1-21, January.
    15. Brigitte Mueller & Xuebin Zhang, 2016. "Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data," Climatic Change, Springer, vol. 134(1), pages 255-267, January.
    16. Guga, Suri & Ma, Yining & Riao, Dao & Zhi, Feng & Xu, Jie & Zhang, Jiquan, 2023. "Drought monitoring of sugarcane and dynamic variation characteristics under global warming: A case study of Guangxi, China," Agricultural Water Management, Elsevier, vol. 275(C).
    17. Adil Dilawar & Baozhang Chen & Arfan Arshad & Lifeng Guo & Muhammad Irfan Ehsan & Yawar Hussain & Alphonse Kayiranga & Simon Measho & Huifang Zhang & Fei Wang & Xiaohong Sun & Mengyu Ge, 2021. "Towards Understanding Variability in Droughts in Response to Extreme Climate Conditions over the Different Agro-Ecological Zones of Pakistan," Sustainability, MDPI, vol. 13(12), pages 1-28, June.
    18. Subhasis Mitra & Puneet Srivastava, 2017. "Spatiotemporal variability of meteorological droughts in southeastern USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1007-1038, April.
    19. Nam, Won-Ho & Hayes, Michael J. & Svoboda, Mark D. & Tadesse, Tsegaye & Wilhite, Donald A., 2015. "Drought hazard assessment in the context of climate change for South Korea," Agricultural Water Management, Elsevier, vol. 160(C), pages 106-117.
    20. Jing Zhang & Kaushal Raj Gnyawali & Yi Shang & Yang Pu & Lijuan Miao, 2022. "Spatial agglomeration of drought-affected area detected in northern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 145-161, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:4:d:10.1007_s10668-020-00805-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.