IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v12y2023i9p1672-d1226290.html
   My bibliography  Save this article

The Divergent Resistance and Resilience of Forest and Grassland Ecosystems to Extreme Summer Drought in Carbon Sequestration

Author

Listed:
  • Jie Lu

    (Henan Agricultural Remote Sensing Big Data Development and Innovation Laboratory, Department of Surveying and Planning, Shangqiu Normal University, Shangqiu 476000, China
    State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Fengqin Yan

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

It is projected that extreme drought events will become more frequent and more severe across many regions of the globe by the end of the 21st century. Despite the substantial efforts that have been made to explore the impacts of droughts on terrestrial ecosystems, our understanding of the response of diverse ecosystems, including resistance and resilience, remains unclear. A total of 16 site years of eddy covariance-based carbon flux data were used to reveal the different responses of forest and grassland ecosystems to two extreme summer droughts. We found that the carbon fluxes of the forest, namely gross primary productivity (GPP), ecosystem respiration (Re), and the net ecosystem carbon exchange (NEE), exhibited distinct seasonal patterns with a single peak. However, GPP and NEE of grassland showed multiple peaks owing to hay harvesting throughout one year. Meanwhile, all climate factors jointly affected the seasonal dynamics in the NEE of the forest, whereas solar radiation only dominated the variability in the NEE of grassland. Moreover, the optimal response relationship was quadratic between the vapor pressure deficit (VPD) and the NEE, with the thresholds being 5.46 and 5.84 for forest and grassland, respectively. Owing to the large increase in VPD during the droughts of 2003 and 2018, the carbon sequestration of forest and grassland reduced sharply and even altered from carbon sink to carbon source. Compared with grassland, forest GPP showed stronger resistance with weaker resilience to droughts. However, larger resilience appeared for both forest and grassland NEE relative to their resistance. All analyses reflect the different adaptive strategies among plant functional types, which is crucial to evaluate ecosystem carbon sequestration to overcome future climate change.

Suggested Citation

  • Jie Lu & Fengqin Yan, 2023. "The Divergent Resistance and Resilience of Forest and Grassland Ecosystems to Extreme Summer Drought in Carbon Sequestration," Land, MDPI, vol. 12(9), pages 1-17, August.
  • Handle: RePEc:gam:jlands:v:12:y:2023:i:9:p:1672-:d:1226290
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/12/9/1672/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/12/9/1672/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peter M. Cox & David Pearson & Ben B. Booth & Pierre Friedlingstein & Chris Huntingford & Chris D. Jones & Catherine M. Luke, 2013. "Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability," Nature, Nature, vol. 494(7437), pages 341-344, February.
    2. Christopher R. Schwalm & William R. L. Anderegg & Anna M. Michalak & Joshua B. Fisher & Franco Biondi & George Koch & Marcy Litvak & Kiona Ogle & John D. Shaw & Adam Wolf & Deborah N. Huntzinger & Kev, 2017. "Global patterns of drought recovery," Nature, Nature, vol. 548(7666), pages 202-205, August.
    3. Ph. Ciais & M. Reichstein & N. Viovy & A. Granier & J. Ogée & V. Allard & M. Aubinet & N. Buchmann & Chr. Bernhofer & A. Carrara & F. Chevallier & N. De Noblet & A. D. Friend & P. Friedlingstein & T. , 2005. "Europe-wide reduction in primary productivity caused by the heat and drought in 2003," Nature, Nature, vol. 437(7058), pages 529-533, September.
    4. William R. L. Anderegg & Alexandra G. Konings & Anna T. Trugman & Kailiang Yu & David R. Bowling & Robert Gabbitas & Daniel S. Karp & Stephen Pacala & John S. Sperry & Benjamin N. Sulman & Nicole Zene, 2018. "Hydraulic diversity of forests regulates ecosystem resilience during drought," Nature, Nature, vol. 561(7724), pages 538-541, September.
    5. Chen, Yanan & Ding, Zhi & Yu, Pujia & Yang, Hong & Song, Lisheng & Fan, Lei & Han, Xujun & Ma, Mingguo & Tang, Xuguang, 2022. "Quantifying the variability in water use efficiency from the canopy to ecosystem scale across main croplands," Agricultural Water Management, Elsevier, vol. 262(C).
    6. Forest Isbell & Dylan Craven & John Connolly & Michel Loreau & Bernhard Schmid & Carl Beierkuhnlein & T. Martijn Bezemer & Catherine Bonin & Helge Bruelheide & Enrica de Luca & Anne Ebeling & John N. , 2015. "Biodiversity increases the resistance of ecosystem productivity to climate extremes," Nature, Nature, vol. 526(7574), pages 574-577, October.
    7. Vincent Humphrey & Alexis Berg & Philippe Ciais & Pierre Gentine & Martin Jung & Markus Reichstein & Sonia I. Seneviratne & Christian Frankenberg, 2021. "Soil moisture–atmosphere feedback dominates land carbon uptake variability," Nature, Nature, vol. 592(7852), pages 65-69, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Runqing Zhang & Xiaoyu E & Zhencheng Ma & Yinghe An & Qinggele Bao & Zhixiang Wu & Lan Wu & Zhongyi Sun, 2024. "Drought Sensitivity and Vulnerability of Rubber Plantation GPP—Insights from Flux Site-Based Simulation," Land, MDPI, vol. 13(6), pages 1-16, May.
    2. Natalya Ivanova & Ekaterina Zolotova, 2024. "Vegetation Dynamics Studies Based on Ellenberg and Landolt Indicator Values: A Review," Land, MDPI, vol. 13(10), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangzhong Luo & Trevor F. Keenan, 2022. "Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Xiaoliang Shi & Fei Chen & Hao Ding & Mengqi Shi & Yi Li, 2022. "Assessing Vegetation Ecosystem Resistance to Drought in the Middle Reaches of the Yellow River Basin, China," IJERPH, MDPI, vol. 19(7), pages 1-16, March.
    3. Seixas, Hugo Tameirão & Brunsell, Nathaniel A. & Moraes, Elisabete Caria & de Oliveira, Gabriel & Mataveli, Guilherme, 2022. "Exploring the ecosystem resilience concept with land surface model scenarios," Ecological Modelling, Elsevier, vol. 464(C).
    4. Xiangtao Wang & Zhigang Hu & Ziwei Zhang & Jiwang Tang & Ben Niu, 2024. "Altitude-Shifted Climate Variables Dominate the Drought Effects on Alpine Grasslands over the Qinghai–Tibetan Plateau," Sustainability, MDPI, vol. 16(15), pages 1-16, August.
    5. Kai Wang & Ana Bastos & Philippe Ciais & Xuhui Wang & Christian Rödenbeck & Pierre Gentine & Frédéric Chevallier & Vincent W. Humphrey & Chris Huntingford & Michael O’Sullivan & Sonia I. Seneviratne, 2022. "Regional and seasonal partitioning of water and temperature controls on global land carbon uptake variability," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. Zhang, Xiaoyuan & Wang, Ke & Duan, Cuihua & Li, Gaoliang & Zhen, Qing & Zheng, Jiyong, 2023. "Evaporation effect of infiltration hole and its comparison with mulching," Agricultural Water Management, Elsevier, vol. 275(C).
    7. Lai, Chengguang & Sun, Haowei & Wu, Xushu & Li, Jun & Wang, Zhaoli & Tong, Hongfu & Feng, Jiajin, 2024. "Water availability may not constrain vegetation growth in Northern Hemisphere," Agricultural Water Management, Elsevier, vol. 291(C).
    8. Linghui Guo & Yuanyuan Luo & Yao Li & Tianping Wang & Jiangbo Gao & Hebing Zhang & Youfeng Zou & Shaohong Wu, 2023. "Spatiotemporal Changes and the Prediction of Drought Characteristics in a Major Grain-Producing Area of China," Sustainability, MDPI, vol. 15(22), pages 1-19, November.
    9. Xueqin Jiang & Shanjun Luo & Qin Ye & Xican Li & Weihua Jiao, 2022. "Hyperspectral Estimates of Soil Moisture Content Incorporating Harmonic Indicators and Machine Learning," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    10. Finger, Robert, 2010. "Evidence of slowing yield growth - The example of Swiss cereal yields," Food Policy, Elsevier, vol. 35(2), pages 175-182, April.
    11. Martina Bozzola & Robert Finger, 2021. "Stability of risk attitude, agricultural policies and production shocks: evidence from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(3), pages 477-501.
    12. Yanqun Ren & Jinping Liu & Patrick Willems & Tie Liu & Quoc Bao Pham, 2023. "Detection and Assessment of Changing Drought Events in China in the Context of Climate Change Based on the Intensity–Area–Duration Algorithm," Land, MDPI, vol. 12(10), pages 1-18, September.
    13. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    14. Parwati Sofan & Yenni Vetrita & Fajar Yulianto & Muhammad Khomarudin, 2016. "Multi-temporal remote sensing data and spectral indices analysis for detection tropical rainforest degradation: case study in Kapuas Hulu and Sintang districts, West Kalimantan, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1279-1301, January.
    15. Zhiming Zhang & Fengman Fang & Youru Yao & Qing Ji & Xiaojing Cheng, 2024. "Exploring the Response of Ecosystem Services to Socioecological Factors in the Yangtze River Economic Belt, China," Land, MDPI, vol. 13(6), pages 1-18, May.
    16. Friedrich Scherzinger & Martin Schädler & Thomas Reitz & Rui Yin & Harald Auge & Ines Merbach & Christiane Roscher & W Stanley Harpole & Evgenia Blagodatskaya & Julia Siebert & Marcel Ciobanu & Fabian, 2024. "Sustainable land management enhances ecological and economic multifunctionality under ambient and future climate," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    18. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    19. Augeraud-Véron, Emmanuelle & Fabbri, Giorgio & Schubert, Katheline, 2021. "Volatility-reducing biodiversity conservation under strategic interactions," Ecological Economics, Elsevier, vol. 190(C).
    20. Iris Vogeler & Christof Kluß & Tammo Peters & Friedhelm Taube, 2023. "How Much Complexity Is Required for Modelling Grassland Production at Regional Scales?," Land, MDPI, vol. 12(2), pages 1-18, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:12:y:2023:i:9:p:1672-:d:1226290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.