IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v269y2022ics0378377422001871.html
   My bibliography  Save this article

Modified ECa – ECe protocols for mapping soil salinity under micro-irrigation

Author

Listed:
  • Corwin, D.L.
  • Scudiero, E.
  • Zaccaria, D.

Abstract

Climate change will increase the frequency and intensity of drought in water-scarce agricultural areas that rely on irrigation. The increased strain on finite water resources for irrigated agriculture will cause a shift from sprinkler and flood irrigation to micro-irrigation. Micro-irrigation results in complex 3-dimensional salinity patterns. Current field-scale apparent soil electrical conductivity (ECa) directed soil sampling protocols and guidelines are inadequate for mapping the complex local-scale 3-dimensional nature of salinity resulting from water applications by micro-irrigation systems (i.e., drip, buried drip, micro sprinklers, bubblers, etc.). A field study was conducted to develop additional ECa-directed soil sampling guidelines to map local- and field-scale variability in salinity under drip-irrigation systems within a commercial nut production orchard (i.e., pistachio orchard) using hard (i.e., salinity or ECe, electrical conductivity of the saturation extract) and soft data (i.e., geospatial ECa measurements), which required an accurate ECa – ECe calibration. The revised ECa-directed soil sampling guidelines for drip irrigation on a mature pistachio orchard indicate that a single soil core should be taken 0.9–1.2 m perpendicular to the drip line within the tree root system, rather than at the drip line, to improve the ECa – ECe calibration. Calibration of ECa to ECe, improved from R2 = 0.25 to R2 = 0.73 for site Flores D01, and from R2 = 0.17 to R2 = 0.72 for site Flores D05. The improved guidelines broaden the scope of application of ECa-directed soil sampling to map field-scale salinity on orchards under drip irrigation. The information presented is of value and benefit to producers, agriculture consultants, irrigation practitioners, cooperative extension specialists, Natural Resources Conservation Service field staff, and soil and water researchers.

Suggested Citation

  • Corwin, D.L. & Scudiero, E. & Zaccaria, D., 2022. "Modified ECa – ECe protocols for mapping soil salinity under micro-irrigation," Agricultural Water Management, Elsevier, vol. 269(C).
  • Handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422001871
    DOI: 10.1016/j.agwat.2022.107640
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377422001871
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2022.107640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Qadir & E. Quillérou & V. Nangia & G. Murtaza & M. Singh & R.J. Thomas & P. Drechsel & A.D. Noble, 2014. "Economics of salt‐induced land degradation and restoration," Natural Resources Forum, Blackwell Publishing, vol. 0(4), pages 282-295, November.
    2. Aiguo Dai, 2011. "Drought under global warming: a review," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(1), pages 45-65, January.
    3. M. Qadir & E. Quillérou & V. Nangia & G. Murtaza & M. Singh & R.J. Thomas & P. Drechsel & A.D. Noble, 2014. "Economics of salt‐induced land degradation and restoration," Natural Resources Forum, Blackwell Publishing, vol. 0(4), pages 282-295, November.
    4. Rebecca Taylor & David Zilberman, 2017. "Diffusion of Drip Irrigation: The Case of California," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 39(1), pages 16-40.
    5. M. Qadir & E. Quillérou & V. Nangia & G. Murtaza & M. Singh & R.J. Thomas & P. Drechsel & A.D. Noble, 2014. "Economics of salt‐induced land degradation and restoration," Natural Resources Forum, Blackwell Publishing, vol. 38(4), pages 282-295, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bughici, Theodor & Skaggs, Todd H. & Corwin, Dennis L. & Scudiero, Elia, 2022. "Ensemble HYDRUS-2D modeling to improve apparent electrical conductivity sensing of soil salinity under drip irrigation," Agricultural Water Management, Elsevier, vol. 272(C).
    2. Lorenzo De Carlo & Mohammad Farzamian, 2024. "Assessing the Impact of Brackish Water on Soil Salinization with Time-Lapse Inversion of Electromagnetic Induction Data," Land, MDPI, vol. 13(7), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ashenafi Worku Daba & Asad Sarwar Qureshi, 2021. "Review of Soil Salinity and Sodicity Challenges to Crop Production in the Lowland Irrigated Areas of Ethiopia and Its Management Strategies," Land, MDPI, vol. 10(12), pages 1-21, December.
    2. Hafiz Muhammad Bilal & Haseeb Islam & Muhammad Adnan & Rohoma Tahir & Rabia Zulfiqar & Muhammad Shakeeb Umer & Muhammad Mohsin kaleem, 2020. "Effect of Salinity Stress on Growth, Yield and Quality of Roses: A Review," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 25(1), pages 46-50, June.
    3. Aeggarchat Sirisankanan, 2023. "Natural circumstances and farm labor supply adjustment: the response of the farm labor supply to permanent and transitory natural events," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(9), pages 9935-9961, September.
    4. Yin Zhang & Qingfeng Miao & Ruiping Li & Minghai Sun & Xinmin Yang & Wei Wang & Yongping Huang & Weiying Feng, 2024. "Distribution and Variation of Soil Water and Salt before and after Autumn Irrigation," Land, MDPI, vol. 13(6), pages 1-18, May.
    5. Shiksha Chaurasia & Arvind Kumar & Amit Kumar Singh, 2022. "Comprehensive Evaluation of Morpho-Physiological and Ionic Traits in Wheat ( Triticum aestivum L.) Genotypes under Salinity Stress," Agriculture, MDPI, vol. 12(11), pages 1-15, October.
    6. Song, Changji & Song, Jingru & Wu, Qiang & Shen, Xiaojun & Hu, Yawei & Hu, Caihong & Li, Wenhao & Wang, Zhenhua, 2023. "Effects of applying river sediment with irrigation water on salinity leaching during wheat-maize rotation in the Yellow River Delta," Agricultural Water Management, Elsevier, vol. 276(C).
    7. Xia An & Qin Liu & Feixiang Pan & Yu Yao & Xiahong Luo & Changli Chen & Tingting Liu & Lina Zou & Weidong Wang & Jinwang Wang & Xing Liu, 2023. "Research Advances in the Impacts of Biochar on the Physicochemical Properties and Microbial Communities of Saline Soils," Sustainability, MDPI, vol. 15(19), pages 1-16, October.
    8. Shih-Chi Lee & Yutaka Kitamura & Shu-Hsien Tsai & Chuan-Chi Chien & Chun-Shen Cheng & Chin-Cheng Hsieh, 2022. "Screening of Rhizosphere Microbes of Salt-Tolerant Plants and Developed Composite Materials of Biochar Micro-Coated Soil Beneficial Microorganisms," Sustainability, MDPI, vol. 14(24), pages 1-15, December.
    9. Yuan Qiu & Yamin Wang & Yaqiong Fan & Xinmei Hao & Sien Li & Shaozhong Kang, 2023. "Root, Yield, and Quality of Alfalfa Affected by Soil Salinity in Northwest China," Agriculture, MDPI, vol. 13(4), pages 1-17, March.
    10. Aadhityaa Mohanavelu & Sujay Raghavendra Naganna & Nadhir Al-Ansari, 2021. "Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies," Agriculture, MDPI, vol. 11(10), pages 1-17, October.
    11. Ali Moro & Abraham Oduro & Bernard Fei Baffoe & Maxwell Dalaba, 2020. "Fuel Consumption for Various Dishes for a Wood Fueled and Charcoal Fueled Improved Stoves used in Rural Northern Ghana," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 25(2), pages 51-62, June.
    12. Mahrokh Farvardin & Morteza Taki & Shiva Gorjian & Edris Shabani & Julio C. Sosa-Savedra, 2024. "Assessing the Physical and Environmental Aspects of Greenhouse Cultivation: A Comprehensive Review of Conventional and Hydroponic Methods," Sustainability, MDPI, vol. 16(3), pages 1-34, February.
    13. van Straten, G. & de Vos, A.C. & Rozema, J. & Bruning, B. & van Bodegom, P.M., 2019. "An improved methodology to evaluate crop salt tolerance from field trials," Agricultural Water Management, Elsevier, vol. 213(C), pages 375-387.
    14. Tunca, Mehmet Can & Saysel, Ali Kerem & Babaei, Masoud & Erpul, Günay, 2023. "A dynamic model for salinity and sodicity management on agricultural lands: Interactive simulation approach," Ecological Modelling, Elsevier, vol. 482(C).
    15. Sheoran, Parvender & Basak, Nirmalendu & Kumar, Ashwani & Yadav, R.K. & Singh, Randhir & Sharma, Raman & Kumar, Satyendra & Singh, Ranjay K. & Sharma, P.C., 2021. "Ameliorants and salt tolerant varieties improve rice-wheat production in soils undergoing sodification with alkali water irrigation in Indo–Gangetic Plains of India," Agricultural Water Management, Elsevier, vol. 243(C).
    16. Ashley Gorst & Ben Groom & Ali Dehlavi, 2015. "Crop productivity and adaptation to climate change in Pakistan," GRI Working Papers 189, Grantham Research Institute on Climate Change and the Environment.
    17. Paul L. G. Vlek & Asia Khamzina & Hossein Azadi & Anik Bhaduri & Luna Bharati & Ademola Braimoh & Christopher Martius & Terry Sunderland & Fatemeh Taheri, 2017. "Trade-Offs in Multi-Purpose Land Use under Land Degradation," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    18. Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
    19. Louis Sears & Joseph Caparelli & Clouse Lee & Devon Pan & Gillian Strandberg & Linh Vuu & C. -Y. Cynthia Lin Lawell, 2018. "Jevons’ Paradox and Efficient Irrigation Technology," Sustainability, MDPI, vol. 10(5), pages 1-12, May.
    20. Giulio Sperandio & Mauro Pagano & Andrea Acampora & Vincenzo Civitarese & Carla Cedrola & Paolo Mattei & Roberto Tomasone, 2022. "Deficit Irrigation for Efficiency and Water Saving in Poplar Plantations," Sustainability, MDPI, vol. 14(21), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:269:y:2022:i:c:s0378377422001871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.