Assessments of Drought Impacts on Vegetation in China with the Optimal Time Scales of the Climatic Drought Index
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Justin Sheffield & Eric F. Wood & Michael L. Roderick, 2012. "Little change in global drought over the past 60 years," Nature, Nature, vol. 491(7424), pages 435-438, November.
- Sonia I. Seneviratne, 2012. "Historical drought trends revisited," Nature, Nature, vol. 491(7424), pages 338-339, November.
- Aiguo Dai, 2013. "Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(1), pages 52-58, January.
- Aiguo Dai, 2013. "Erratum: Increasing drought under global warming in observations and models," Nature Climate Change, Nature, vol. 3(2), pages 171-171, February.
- Sergio Vicente-Serrano, 2006. "Differences in Spatial Patterns of Drought on Different Time Scales: An Analysis of the Iberian Peninsula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(1), pages 37-60, February.
- Sergio Vicente-Serrano, 2007. "Evaluating the Impact of Drought Using Remote Sensing in a Mediterranean, Semi-arid Region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 173-208, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Murken, Lisa & Kraehnert, Kati & Gornott, Christoph, 2024. "Is this land for sale? The effects of drought on land ownership in Uganda," Ecological Economics, Elsevier, vol. 218(C).
- Leisenheimer, Leonie & Wellmann, Thilo & Jänicke, Clemens & Haase, Dagmar, 2024. "Monitoring drought impacts on street trees using remote sensing - Disentangling temporal and species-specific response patterns with Sentinel-2 imagery," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 82, pages 1-14.
- Xiaoliang Shi & Fei Chen & Hao Ding & Mengqi Shi & Yi Li, 2022. "Assessing Vegetation Ecosystem Resistance to Drought in the Middle Reaches of the Yellow River Basin, China," IJERPH, MDPI, vol. 19(7), pages 1-16, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rengui Jiang & Jiancang Xie & Hailong He & Jungang Luo & Jiwei Zhu, 2015. "Use of four drought indices for evaluating drought characteristics under climate change in Shaanxi, China: 1951–2012," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2885-2903, February.
- Sergio M. Vicente-Serrano & Miquel Tomas-Burguera & Santiago Beguería & Fergus Reig & Borja Latorre & Marina Peña-Gallardo & M. Yolanda Luna & Ana Morata & José C. González-Hidalgo, 2017. "A High Resolution Dataset of Drought Indices for Spain," Data, MDPI, vol. 2(3), pages 1-10, June.
- Brigitte Mueller & Xuebin Zhang, 2016. "Causes of drying trends in northern hemispheric land areas in reconstructed soil moisture data," Climatic Change, Springer, vol. 134(1), pages 255-267, January.
- Ashenafi Yimam Kassaye & Guangcheng Shao & Xiaojun Wang & Shiqing Wu, 2021. "Quantification of drought severity change in Ethiopia during 1952–2017," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 5096-5121, April.
- Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
- L. Lin & A. Gettelman & Q. Fu & Y. Xu, 2018. "Simulated differences in 21st century aridity due to different scenarios of greenhouse gases and aerosols," Climatic Change, Springer, vol. 146(3), pages 407-422, February.
- Gregory McCabe & David Wolock, 2015. "Increasing Northern Hemisphere water deficit," Climatic Change, Springer, vol. 132(2), pages 237-249, September.
- Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
- Lei Zou & Jun Xia & Dunxian She, 2018. "Analysis of Impacts of Climate Change and Human Activities on Hydrological Drought: a Case Study in the Wei River Basin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(4), pages 1421-1438, March.
- Ruiwen Zhang & Chengyi Zhao & Xiaofei Ma & Karthikeyan Brindha & Qifei Han & Chaofan Li & Xiaoning Zhao, 2019. "Projected Spatiotemporal Dynamics of Drought under Global Warming in Central Asia," Sustainability, MDPI, vol. 11(16), pages 1-19, August.
- Julia S. Stoyanova & Christo G. Georgiev & Plamen N. Neytchev, 2023. "Drought Monitoring in Terms of Evapotranspiration Based on Satellite Data from Meteosat in Areas of Strong Land–Atmosphere Coupling," Land, MDPI, vol. 12(1), pages 1-21, January.
- Prabir Kumar Das & Rituparna Das & Dilip Kumar Das & Subrata Kumar Midya & Soumya Bandyopadhyay & Uday Raj, 2020. "Quantification of agricultural drought over Indian region: a multivariate phenology-based approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 101(1), pages 255-274, March.
- Subhasis Mitra & Puneet Srivastava, 2017. "Spatiotemporal variability of meteorological droughts in southeastern USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1007-1038, April.
- Nam, Won-Ho & Hayes, Michael J. & Svoboda, Mark D. & Tadesse, Tsegaye & Wilhite, Donald A., 2015. "Drought hazard assessment in the context of climate change for South Korea," Agricultural Water Management, Elsevier, vol. 160(C), pages 106-117.
- Jing Zhang & Kaushal Raj Gnyawali & Yi Shang & Yang Pu & Lijuan Miao, 2022. "Spatial agglomeration of drought-affected area detected in northern China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 145-161, May.
- Hao Xu & Xu Lian & Ingrid J. Slette & Hui Yang & Yuan Zhang & Anping Chen & Shilong Piao, 2022. "Rising ecosystem water demand exacerbates the lengthening of tropical dry seasons," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
- Jamal Uddin Khan & A. K. M. Saiful Islam & Mohan K. Das & Khaled Mohammed & Sujit Kumar Bala & G. M. Tarekul Islam, 2020. "Future changes in meteorological drought characteristics over Bangladesh projected by the CMIP5 multi-model ensemble," Climatic Change, Springer, vol. 162(2), pages 667-685, September.
- Wen Wang & Ye Zhu & Rengui Xu & Jintao Liu, 2015. "Drought severity change in China during 1961–2012 indicated by SPI and SPEI," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(3), pages 2437-2451, February.
- A. L. Kay & V. A. Bell & B. P. Guillod & R. G. Jones & A. C. Rudd, 2018. "National-scale analysis of low flow frequency: historical trends and potential future changes," Climatic Change, Springer, vol. 147(3), pages 585-599, April.
- Alison C. Rudd & A. L. Kay & V. A. Bell, 2019. "National-scale analysis of future river flow and soil moisture droughts: potential changes in drought characteristics," Climatic Change, Springer, vol. 156(3), pages 323-340, October.
More about this item
Keywords
drought; SPEI; optimal time scales; NDVI; ecological assessment; China;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:7:p:7615-7634:d:52233. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.