IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12326-d927613.html
   My bibliography  Save this article

Coastal Erosion and Flood Coping Mechanisms in Southern Thailand: A Qualitative Study

Author

Listed:
  • Uma Langkulsen

    (Faculty of Public Health, Thammasat University, Pathum Thani 12120, Thailand)

  • Pannee Cheewinsiriwat

    (Center of Excellence in Geography and Geoinformatics, Department of Geography, Faculty of Arts, Chulalongkorn University, Bangkok 10330, Thailand)

  • Desire Tarwireyi Rwodzi

    (UNAIDS Regional Support Team for Asia and the Pacific, Bangkok 10200, Thailand)

  • Augustine Lambonmung

    (Faculty of Public Health, Thammasat University, Pathum Thani 12120, Thailand)

  • Wanlee Poompongthai

    (Department of Geography, Faculty of Arts, Chulalongkorn University, Bangkok 10330, Thailand)

  • Chalermpol Chamchan

    (Institute for Population and Social Research, Mahidol University, Nakhon Pathom 73170, Thailand)

  • Suparee Boonmanunt

    (Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand)

  • Kanchana Nakhapakorn

    (Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand)

  • Cherith Moses

    (Department of Geography and Geology, Edge Hill University, Ormskirk L39 4QP, UK)

Abstract

Communities in coastal regions are affected by the impacts of extreme climatic events causing flooding and erosion. Reducing the impacts of flood and erosion in these areas by adopting coping strategies that fortify the resilience of individuals and their localities is desirable. This study used summative content analysis to explore the coping mechanisms of coastal communities before, during, and after various dangers relating to flooding and erosion. The findings from the study show that effective surveillance systems, disaster preparedness, risk mapping, early warning systems, availability of databases and functional command systems, as well as reliable funding are essential to efficiently cope with hazards of coastal flooding and erosion. As flooding and erosion have been predicted to be more severe due to climate change in the coming years, the adoption of effective natural and artificial mechanisms with modern technologies could help coastal regions to be more resilient in coping with the dangers associated with flooding and erosion. Pragmatic policies and programs to this end by actors are critical to averting crises induced by flooding and erosion in coastal areas.

Suggested Citation

  • Uma Langkulsen & Pannee Cheewinsiriwat & Desire Tarwireyi Rwodzi & Augustine Lambonmung & Wanlee Poompongthai & Chalermpol Chamchan & Suparee Boonmanunt & Kanchana Nakhapakorn & Cherith Moses, 2022. "Coastal Erosion and Flood Coping Mechanisms in Southern Thailand: A Qualitative Study," IJERPH, MDPI, vol. 19(19), pages 1-14, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12326-:d:927613
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barbara Neumann & Athanasios T Vafeidis & Juliane Zimmermann & Robert J Nicholls, 2015. "Future Coastal Population Growth and Exposure to Sea-Level Rise and Coastal Flooding - A Global Assessment," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-34, March.
    2. Uma Langkulsen & Desire Tarwireyi Rwodzi & Pannee Cheewinsiriwat & Kanchana Nakhapakorn & Cherith Moses, 2022. "Socio-Economic Resilience to Floods in Coastal Areas of Thailand," IJERPH, MDPI, vol. 19(12), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sem J. Duijndam & W. J. Wouter Botzen & Liselotte C. Hagedoorn & Philip Bubeck & Toon Haer & My Pham & Jeroen C. J. H. Aerts, 2023. "Drivers of migration intentions in coastal Vietnam under increased flood risk from sea level rise," Climatic Change, Springer, vol. 176(2), pages 1-22, February.
    2. Philip Antwi-Agyei & Frank Baffour-Ata & Sarah Koomson & Nana Kwame Kyeretwie & Nana Barimah Nti & Afia Oforiwaa Owusu & Fukaiha Abdul Razak, 2023. "Drivers and coping mechanisms for floods: experiences of residents in urban Kumasi, Ghana," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2477-2500, March.
    3. Anirban Mukhopadhyay & Sugata Hazra & Debasish Mitra & C. Hutton & Abhra Chanda & Sandip Mukherjee, 2016. "Characterizing the multi-risk with respect to plausible natural hazards in the Balasore coast, Odisha, India: a multi-criteria analysis (MCA) appraisal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(3), pages 1495-1513, February.
    4. Islam, Md. Mofakkarul & Sarker, Md. Asaduzzaman & Al Mamun, Md. Abdullah & Mamun-ur-Rashid, Md. & Roy, Debashis, 2021. "Stepping Up versus Stepping Out: On the outcomes and drivers of two alternative climate change adaptation strategies of smallholders," World Development, Elsevier, vol. 148(C).
    5. Ke Wang & Yongsheng Yang & Genserik Reniers & Quanyi Huang, 2021. "A study into the spatiotemporal distribution of typhoon storm surge disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1237-1256, August.
    6. Lin, Yatang & McDermott, Thomas K.J. & Michaels, Guy, 2024. "Cities and the sea level," Journal of Urban Economics, Elsevier, vol. 143(C).
    7. Domingues, Rita & Costas, Susana & Jesus, Saul & Ferreira, Óscar, 2017. "SENSE OF PLACE, RISK PERCEPTIONS AND PREPAREDNESS OF A COASTAL POPULATION AT RISK (Faro Beach, Portugal): A qualitative content analysis," Journal of Tourism, Sustainability and Well-being, Cinturs - Research Centre for Tourism, Sustainability and Well-being, University of Algarve, vol. 5(3), pages 163-175.
    8. Joseph L.-H. Tsui & Rosario Evans Pena & Monika Moir & Rhys P. D. Inward & Eduan Wilkinson & James Emmanuel San & Jenicca Poongavanan & Sumali Bajaj & Bernardo Gutierrez & Abhishek Dasgupta & Tulio Ol, 2024. "Impacts of climate change-related human migration on infectious diseases," Nature Climate Change, Nature, vol. 14(8), pages 793-802, August.
    9. Zhibin Yang & Robert Stachler & Joshua S. Heyne, 2020. "Orthogonal Reference Surrogate Fuels for Operability Testing," Energies, MDPI, vol. 13(8), pages 1-13, April.
    10. Rifat, Shaikh Abdullah Al & Liu, Weibo, 2022. "Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area," Land Use Policy, Elsevier, vol. 114(C).
    11. Magalhães Filho, L.N.L. & Roebeling, P.C. & Costa, L.F.C. & de Lima, L.T., 2022. "Ecosystem services values at risk in the Atlantic coastal zone due to sea-level rise and socioeconomic development," Ecosystem Services, Elsevier, vol. 58(C).
    12. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    13. Ryota Nakamura & Martin Mäll & Tomoya Shibayama, 2019. "Street-scale storm surge load impact assessment using fine-resolution numerical modelling: a case study from Nemuro, Japan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(1), pages 391-422, October.
    14. Gelian Song & Meijuan Xia & Dahai Zhang, 2023. "Deep Reinforcement Learning for Risk and Disaster Management in Energy-Efficient Marine Ranching," Energies, MDPI, vol. 16(16), pages 1-20, August.
    15. Maria Fabrizia Clemente, 2022. "The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    16. Yılmaz, Merve & Terzi, Fatih, 2021. "Measuring the patterns of urban spatial growth of coastal cities in developing countries by geospatial metrics," Land Use Policy, Elsevier, vol. 107(C).
    17. Fei Huo & Li Xu & Yanping Li & James S. Famiglietti & Zhenhua Li & Yuya Kajikawa & Fei Chen, 2021. "Using big data analytics to synthesize research domains and identify emerging fields in urban climatology," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(1), January.
    18. Katrin Millock & Cees Withagen, 2021. "Climate and Migration," World Scientific Book Chapters, in: Anil Markandya & Dirk Rübbelke (ed.), CLIMATE AND DEVELOPMENT, chapter 10, pages 309-341, World Scientific Publishing Co. Pte. Ltd..
    19. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.
    20. Paul A. Sandifer & Alexander S. Braud & Landon C. Knapp & Judith Taylor, 2021. "Is Living in a U.S. Coastal City Good for One’s Health?," IJERPH, MDPI, vol. 18(16), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12326-:d:927613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.