IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i13p7778-d847174.html
   My bibliography  Save this article

Seasonal and Spatial Variations of PM 10 and PM 2.5 Oxidative Potential in Five Urban and Rural Sites across Lombardia Region, Italy

Author

Listed:
  • Maria Chiara Pietrogrande

    (Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy)

  • Giorgia Demaria

    (Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 17/19, 44121 Ferrara, Italy)

  • Cristina Colombi

    (Environmental Monitoring Sector, Arpa Lombardia, Via Rosellini 17, 20124 Milano, Italy)

  • Eleonora Cuccia

    (Environmental Monitoring Sector, Arpa Lombardia, Via Rosellini 17, 20124 Milano, Italy)

  • Umberto Dal Santo

    (Environmental Monitoring Sector, Arpa Lombardia, Via Rosellini 17, 20124 Milano, Italy)

Abstract

Oxidative potential (OP) of particulate matter (PM) is gaining strong interest as a promising health exposure metric. This study investigated OP of a large set of PM 10 and PM 2.5 samples collected at five urban and background sites near Milan (Italy), one of the largest and most polluted urban areas in Europe, afflicted with high particle levels. OP responses from two acellular assays, based on ascorbic acid (AA) and dithiothreitol (DTT), were combined with atmospheric detailed composition to examine any possible feature in OP with PM size fraction, spatial and seasonal variations. A general association of volume-normalized OP with PM mass was found; this association may be related to the clear seasonality observed, whereby there was higher OP activity in wintertime at all investigated sites. Univariate correlations were used to link OP with the concentrations of the major chemical markers of vehicular and biomass burning emissions. Of the two assays, AA was particularly sensitive towards transition metals in coarse particles released from vehicular traffic. The results obtained confirm that the responses from the two assays and their relationship with atmospheric pollutants are assay- and location-dependent, and that their combination is therefore helpful to singling out the PM redox-active compounds driving its oxidative properties.

Suggested Citation

  • Maria Chiara Pietrogrande & Giorgia Demaria & Cristina Colombi & Eleonora Cuccia & Umberto Dal Santo, 2022. "Seasonal and Spatial Variations of PM 10 and PM 2.5 Oxidative Potential in Five Urban and Rural Sites across Lombardia Region, Italy," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:7778-:d:847174
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/13/7778/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/13/7778/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kaspar R. Daellenbach & Gaëlle Uzu & Jianhui Jiang & Laure-Estelle Cassagnes & Zaira Leni & Athanasia Vlachou & Giulia Stefenelli & Francesco Canonaco & Samuël Weber & Arjo Segers & Jeroen J. P. Kuene, 2020. "Sources of particulate-matter air pollution and its oxidative potential in Europe," Nature, Nature, vol. 587(7834), pages 414-419, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Chiara Pietrogrande & Cristina Colombi & Eleonora Cuccia & Umberto Dal Santo & Luisa Romanato, 2023. "Seasonal and Spatial Variations of the Oxidative Properties of Ambient PM 2.5 in the Po Valley, Italy, before and during COVID-19 Lockdown Restrictions," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    2. Yuan Liu & Xun He & Wanzhang Wang & Chenhui Zhu & Ruibo Jian & Jinfan Chen, 2022. "Agri-Environment Atmospheric Real-Time Monitoring Technology Based on Drone and Light Scattering," Agriculture, MDPI, vol. 12(11), pages 1-20, November.
    3. Zehui Liu & Harald E. Rieder & Christian Schmidt & Monika Mayer & Yixin Guo & Wilfried Winiwarter & Lin Zhang, 2023. "Optimal reactive nitrogen control pathways identified for cost-effective PM2.5 mitigation in Europe," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Smith, Laurence G. & Westaway, Sally & Mullender, Samantha & Ghaley, Bhim Bahadur & Xu, Ying & Lehmann, Lisa Mølgaard & Pisanelli, Andrea & Russo, Giuseppe & Borek, Robert & Wawer, Rafał & Borzęcka, M, 2022. "Assessing the multidimensional elements of sustainability in European agroforestry systems," Agricultural Systems, Elsevier, vol. 197(C).
    5. Simon Briole & Augustin Colette & Emmanuelle Lavaine, 2023. "The Heterogeneous Effects of Lockdown Policies on Air Pollution," Working Papers hal-04084912, HAL.
    6. Deepika Bhattu & Sachchida Nand Tripathi & Himadri Sekhar Bhowmik & Vaios Moschos & Chuan Ping Lee & Martin Rauber & Gary Salazar & Gülcin Abbaszade & Tianqu Cui & Jay G. Slowik & Pawan Vats & Suneeti, 2024. "Local incomplete combustion emissions define the PM2.5 oxidative potential in Northern India," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Gorica Stanojević & Slavica Malinović-Milićević & Eldin Brđanin & Miško Milanović & Milan M. Radovanović & Teodora Popović, 2024. "Impact of Domestic Heating on Air Pollution—Extreme Pollution Events in Serbia," Sustainability, MDPI, vol. 16(18), pages 1-19, September.
    8. Marta Szyba & Jerzy Mikulik, 2023. "Analysis of Feasibility of Producing and Using Biogas in Large Cities, Based on the Example of Krakow and Its Surrounding Municipalities," Energies, MDPI, vol. 16(22), pages 1-20, November.
    9. David Segersson & Christer Johansson & Bertil Forsberg, 2021. "Near-Source Risk Functions for Particulate Matter Are Critical When Assessing the Health Benefits of Local Abatement Strategies," IJERPH, MDPI, vol. 18(13), pages 1-15, June.
    10. Marion Leroutier & Philippe Quirion, 2021. "Tackling Transport-Induced Pollution in Cities: A case Study in Paris," Working Papers 2021.07, FAERE - French Association of Environmental and Resource Economists.
    11. Xiaoyun Ma & Dongyang Nie & Mindong Chen & Pengxiang Ge & Zhengjiang Liu & Xinlei Ge & Zhirao Li & Rui Gu, 2021. "The Relative Contributions of Different Chemical Components to the Oxidative Potential of Ambient Fine Particles in Nanjing Area," IJERPH, MDPI, vol. 18(6), pages 1-17, March.
    12. Sudheer Salana & Haoran Yu & Zhuying Dai & P. S. Ganesh Subramanian & Joseph V. Puthussery & Yixiang Wang & Ajit Singh & Francis D. Pope & Manuel A. Leiva G. & Neeraj Rastogi & Sachchida Nand Tripathi, 2024. "Inter-continental variability in the relationship of oxidative potential and cytotoxicity with PM2.5 mass," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Di Wu & Haotian Zheng & Qing Li & Ling Jin & Rui Lyu & Xiang Ding & Yaoqiang Huo & Bin Zhao & Jingkun Jiang & Jianmin Chen & Xiangdong Li & Shuxiao Wang, 2022. "Toxic potency-adjusted control of air pollution for solid fuel combustion," Nature Energy, Nature, vol. 7(2), pages 194-202, February.
    14. Shuting Zhao & Taoran Shi & Akihiko Terada & Shohei Riya, 2022. "Evaluation of Pollution Level, Spatial Distribution, and Ecological Effects of Antimony in Soils of Mining Areas: A Review," IJERPH, MDPI, vol. 20(1), pages 1-25, December.
    15. Zhou, Di & Zhong, Zhuoxi & Chen, Lubin & Gao, Weixin & Wang, Mingzhe, 2022. "Can the joint regional air pollution control policy achieve a win-win outcome for the environment and economy? Evidence from China," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 13-33.
    16. Di Wu & Haotian Zheng & Qing Li & Shuxiao Wang & Bin Zhao & Ling Jin & Rui Lyu & Shengyue Li & Yuzhe Liu & Xiu Chen & Fenfen Zhang & Qingru Wu & Tonghao Liu & Jingkun Jiang & Lin Wang & Xiangdong Li &, 2023. "Achieving health-oriented air pollution control requires integrating unequal toxicities of industrial particles," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Xiang Li & Xuewen Zhang & Tianya Zhang & Ce Ji & Peiyong Ni & Wanzhong Li & Yiqiang Pei & Zhijun Peng & Raouf Mobasheri, 2024. "Insights into Microscopic Characteristics of Gasoline and Ethanol Spray from a GDI Injector Under Injection Pressure up to 50 MPa," Sustainability, MDPI, vol. 16(21), pages 1-17, October.
    18. Leroutier, Marion & Quirion, Philippe, 2023. "Tackling Car Emissions in Urban Areas: Shift, Avoid, Improve," Ecological Economics, Elsevier, vol. 213(C).
    19. Sasinee Hantrakool & Sirinart Kumfu & Siriporn C. Chattipakorn & Nipon Chattipakorn, 2022. "Effects of Particulate Matter on Inflammation and Thrombosis: Past Evidence for Future Prevention," IJERPH, MDPI, vol. 19(14), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:7778-:d:847174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.