IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-49649-4.html
   My bibliography  Save this article

Inter-continental variability in the relationship of oxidative potential and cytotoxicity with PM2.5 mass

Author

Listed:
  • Sudheer Salana

    (University of Illinois at Urbana Champaign)

  • Haoran Yu

    (University of Illinois at Urbana Champaign
    University of Alberta)

  • Zhuying Dai

    (University of Illinois at Urbana Champaign)

  • P. S. Ganesh Subramanian

    (University of Illinois at Urbana Champaign)

  • Joseph V. Puthussery

    (University of Illinois at Urbana Champaign
    Washington University in St. Louis)

  • Yixiang Wang

    (University of Illinois at Urbana Champaign
    Lehigh University)

  • Ajit Singh

    (University of Birmingham
    University of Birmingham, Edgbaston)

  • Francis D. Pope

    (University of Birmingham)

  • Manuel A. Leiva G.

    (Universidad de Chile, Las Palmeras 3425, Ñuñoa)

  • Neeraj Rastogi

    (Physical Research Laboratory)

  • Sachchida Nand Tripathi

    (Indian Institute of Technology Kanpur
    Indian Institute of Technology Kanpur)

  • Rodney J. Weber

    (Georgia Institute of Technology)

  • Vishal Verma

    (University of Illinois at Urbana Champaign)

Abstract

Most fine ambient particulate matter (PM2.5)-based epidemiological models use globalized concentration-response (CR) functions assuming that the toxicity of PM2.5 is solely mass-dependent without considering its chemical composition. Although oxidative potential (OP) has emerged as an alternate metric of PM2.5 toxicity, the association between PM2.5 mass and OP on a large spatial extent has not been investigated. In this study, we evaluate this relationship using 385 PM2.5 samples collected from 14 different sites across 4 different continents and using 5 different OP (and cytotoxicity) endpoints. Our results show that the relationship between PM2.5 mass vs. OP (and cytotoxicity) is largely non-linear due to significant differences in the intrinsic toxicity, resulting from a spatially heterogeneous chemical composition of PM2.5. These results emphasize the need to develop localized CR functions incorporating other measures of PM2.5 properties (e.g., OP) to better predict the PM2.5-attributed health burdens.

Suggested Citation

  • Sudheer Salana & Haoran Yu & Zhuying Dai & P. S. Ganesh Subramanian & Joseph V. Puthussery & Yixiang Wang & Ajit Singh & Francis D. Pope & Manuel A. Leiva G. & Neeraj Rastogi & Sachchida Nand Tripathi, 2024. "Inter-continental variability in the relationship of oxidative potential and cytotoxicity with PM2.5 mass," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49649-4
    DOI: 10.1038/s41467-024-49649-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-49649-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-49649-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chandima N. P. G. Arachchige & Luke A. Prendergast & Robert G. Staudte, 2022. "Robust analogs to the coefficient of variation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 49(2), pages 268-290, January.
    2. Kaspar R. Daellenbach & Gaëlle Uzu & Jianhui Jiang & Laure-Estelle Cassagnes & Zaira Leni & Athanasia Vlachou & Giulia Stefenelli & Francesco Canonaco & Samuël Weber & Arjo Segers & Jeroen J. P. Kuene, 2020. "Sources of particulate-matter air pollution and its oxidative potential in Europe," Nature, Nature, vol. 587(7834), pages 414-419, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Chiara Pietrogrande & Cristina Colombi & Eleonora Cuccia & Umberto Dal Santo & Luisa Romanato, 2023. "Seasonal and Spatial Variations of the Oxidative Properties of Ambient PM 2.5 in the Po Valley, Italy, before and during COVID-19 Lockdown Restrictions," IJERPH, MDPI, vol. 20(3), pages 1-16, January.
    2. Yuan Liu & Xun He & Wanzhang Wang & Chenhui Zhu & Ruibo Jian & Jinfan Chen, 2022. "Agri-Environment Atmospheric Real-Time Monitoring Technology Based on Drone and Light Scattering," Agriculture, MDPI, vol. 12(11), pages 1-20, November.
    3. Zehui Liu & Harald E. Rieder & Christian Schmidt & Monika Mayer & Yixin Guo & Wilfried Winiwarter & Lin Zhang, 2023. "Optimal reactive nitrogen control pathways identified for cost-effective PM2.5 mitigation in Europe," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Smith, Laurence G. & Westaway, Sally & Mullender, Samantha & Ghaley, Bhim Bahadur & Xu, Ying & Lehmann, Lisa Mølgaard & Pisanelli, Andrea & Russo, Giuseppe & Borek, Robert & Wawer, Rafał & Borzęcka, M, 2022. "Assessing the multidimensional elements of sustainability in European agroforestry systems," Agricultural Systems, Elsevier, vol. 197(C).
    5. Simon Briole & Augustin Colette & Emmanuelle Lavaine, 2023. "The Heterogeneous Effects of Lockdown Policies on Air Pollution," Working Papers hal-04084912, HAL.
    6. Deepika Bhattu & Sachchida Nand Tripathi & Himadri Sekhar Bhowmik & Vaios Moschos & Chuan Ping Lee & Martin Rauber & Gary Salazar & Gülcin Abbaszade & Tianqu Cui & Jay G. Slowik & Pawan Vats & Suneeti, 2024. "Local incomplete combustion emissions define the PM2.5 oxidative potential in Northern India," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Gorica Stanojević & Slavica Malinović-Milićević & Eldin Brđanin & Miško Milanović & Milan M. Radovanović & Teodora Popović, 2024. "Impact of Domestic Heating on Air Pollution—Extreme Pollution Events in Serbia," Sustainability, MDPI, vol. 16(18), pages 1-19, September.
    8. Marta Szyba & Jerzy Mikulik, 2023. "Analysis of Feasibility of Producing and Using Biogas in Large Cities, Based on the Example of Krakow and Its Surrounding Municipalities," Energies, MDPI, vol. 16(22), pages 1-20, November.
    9. David Segersson & Christer Johansson & Bertil Forsberg, 2021. "Near-Source Risk Functions for Particulate Matter Are Critical When Assessing the Health Benefits of Local Abatement Strategies," IJERPH, MDPI, vol. 18(13), pages 1-15, June.
    10. Perepolkin, Dmytro & Lindsröm, Erik & Sahlin, Ullrika, 2023. "Quantile-parameterized distributions for expert knowledge elicitation," OSF Preprints tq3an, Center for Open Science.
    11. Marion Leroutier & Philippe Quirion, 2021. "Tackling Transport-Induced Pollution in Cities: A case Study in Paris," Working Papers 2021.07, FAERE - French Association of Environmental and Resource Economists.
    12. Xiaoyun Ma & Dongyang Nie & Mindong Chen & Pengxiang Ge & Zhengjiang Liu & Xinlei Ge & Zhirao Li & Rui Gu, 2021. "The Relative Contributions of Different Chemical Components to the Oxidative Potential of Ambient Fine Particles in Nanjing Area," IJERPH, MDPI, vol. 18(6), pages 1-17, March.
    13. Di Wu & Haotian Zheng & Qing Li & Ling Jin & Rui Lyu & Xiang Ding & Yaoqiang Huo & Bin Zhao & Jingkun Jiang & Jianmin Chen & Xiangdong Li & Shuxiao Wang, 2022. "Toxic potency-adjusted control of air pollution for solid fuel combustion," Nature Energy, Nature, vol. 7(2), pages 194-202, February.
    14. Shuting Zhao & Taoran Shi & Akihiko Terada & Shohei Riya, 2022. "Evaluation of Pollution Level, Spatial Distribution, and Ecological Effects of Antimony in Soils of Mining Areas: A Review," IJERPH, MDPI, vol. 20(1), pages 1-25, December.
    15. Zhou, Di & Zhong, Zhuoxi & Chen, Lubin & Gao, Weixin & Wang, Mingzhe, 2022. "Can the joint regional air pollution control policy achieve a win-win outcome for the environment and economy? Evidence from China," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 13-33.
    16. Maria Chiara Pietrogrande & Giorgia Demaria & Cristina Colombi & Eleonora Cuccia & Umberto Dal Santo, 2022. "Seasonal and Spatial Variations of PM 10 and PM 2.5 Oxidative Potential in Five Urban and Rural Sites across Lombardia Region, Italy," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    17. Di Wu & Haotian Zheng & Qing Li & Shuxiao Wang & Bin Zhao & Ling Jin & Rui Lyu & Shengyue Li & Yuzhe Liu & Xiu Chen & Fenfen Zhang & Qingru Wu & Tonghao Liu & Jingkun Jiang & Lin Wang & Xiangdong Li &, 2023. "Achieving health-oriented air pollution control requires integrating unequal toxicities of industrial particles," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    18. Leroutier, Marion & Quirion, Philippe, 2023. "Tackling Car Emissions in Urban Areas: Shift, Avoid, Improve," Ecological Economics, Elsevier, vol. 213(C).
    19. Czakon, Wojciech & Klimas, Patrycja & Kawa, Arkadiusz & Kraus, Sascha, 2023. "How myopic are managers? Development and validation of a multidimensional strategic myopia scale," Journal of Business Research, Elsevier, vol. 157(C).
    20. Cao, Yujie & Cheng, Ming & Zhang, Sufang & Mao, Hongju & Wang, Peng & Li, Chao & Feng, Yihui & Ding, Zhaohao, 2022. "Data-driven flexibility assessment for internet data center towards periodic batch workloads," Applied Energy, Elsevier, vol. 324(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-49649-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.