IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v213y2023ics0921800923002148.html
   My bibliography  Save this article

Tackling Car Emissions in Urban Areas: Shift, Avoid, Improve

Author

Listed:
  • Leroutier, Marion
  • Quirion, Philippe

Abstract

Car use imposes costly environmental externalities. We investigate to what extent car trips could be shifted to low-emission modes, avoided via teleworking, or improved via a transition to electric vehicles in the context of daily mobility in the Paris area. We derive counterfactual travel times for 45,000 car trips from a representative transport survey, and formulate modal shift scenarios including a maximum acceptable increase in travel time. For a daily travel time increase below 10 min, 46% of drivers could shift to e-bike – mostly – or public transit – rarely –, with half of them benefiting from a travel time decrease. Such modal shift would reduce daily mobility emissions by 15% and generate annual climate and health benefits worth €125 million. Factors such as living in the far suburbs, being male, or having a high income, are associated with inability to shift modes. Teleworking two days a week could save an additional 5% of emissions. Holding demand for mobility and public transport infrastructure fixed, greater emission reductions require improving cars' environmental performance via a transition to electric vehicles.

Suggested Citation

  • Leroutier, Marion & Quirion, Philippe, 2023. "Tackling Car Emissions in Urban Areas: Shift, Avoid, Improve," Ecological Economics, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:ecolec:v:213:y:2023:i:c:s0921800923002148
    DOI: 10.1016/j.ecolecon.2023.107951
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800923002148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2023.107951?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Tatyana Deryugina & Garth Heutel & Nolan H. Miller & David Molitor & Julian Reif, 2019. "The Mortality and Medical Costs of Air Pollution: Evidence from Changes in Wind Direction," American Economic Review, American Economic Association, vol. 109(12), pages 4178-4219, December.
    2. Jean-Pierre Nicolas & Damien David, 2009. "Passenger transport and CO2 emissions: What does the French transport survey tell us?," Post-Print halshs-00372439, HAL.
    3. Viegas, José M., 2001. "Making urban road pricing acceptable and effective: searching for quality and equity in urban mobility," Transport Policy, Elsevier, vol. 8(4), pages 289-294, October.
    4. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    5. Gillingham, Kenneth & Munk-Nielsen, Anders, 2019. "A tale of two tails: Commuting and the fuel price response in driving," Journal of Urban Economics, Elsevier, vol. 109(C), pages 27-40.
    6. Hidalgo, Dario & Huizenga, Cornie, 2013. "Implementation of sustainable urban transport in Latin America," Research in Transportation Economics, Elsevier, vol. 40(1), pages 66-77.
    7. Scheiner, Joachim, 2010. "Interrelations between travel mode choice and trip distance: trends in Germany 1976–2002," Journal of Transport Geography, Elsevier, vol. 18(1), pages 75-84.
    8. Moritz A. Drupp & Ulrike Kornek & Jasper N. Meya & Lutz Sager, 2021. "Inequality and the Environment: The Economics of a Two-Headed Hydra," CESifo Working Paper Series 9447, CESifo.
    9. Neves, Andre & Brand, Christian, 2019. "Assessing the potential for carbon emissions savings from replacing short car trips with walking and cycling using a mixed GPS-travel diary approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 123(C), pages 130-146.
    10. Kanaroglou, Pavlos S. & Higgins, Christopher D. & Chowdhury, Tufayel A., 2015. "Excess commuting: a critical review and comparative analysis of concepts, indices, and policy implications," Journal of Transport Geography, Elsevier, vol. 44(C), pages 13-23.
    11. Fishman, E. & Schepers, P. & Kamphuis, C.B.M., 2015. "Dutch cycling: Quantifying the health and related economic benefits," American Journal of Public Health, American Public Health Association, vol. 105(8), pages 13-15.
    12. Shaun Larcom & Ferdinand Rauch & Tim Willems, 2017. "The Benefits of Forced Experimentation: Striking Evidence from the London Underground Network," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(4), pages 2019-2055.
    13. James M. Sallee, 2019. "Pigou Creates Losers: On the Implausibility of Achieving Pareto Improvements from Efficiency-Enhancing Policies," NBER Working Papers 25831, National Bureau of Economic Research, Inc.
    14. Crowley, Frank & Daly, Hannah & Doran, Justin & Ryan, Geraldine & Caulfield, Brian, 2021. "The impact of labour market disruptions and transport choice on the environment during COVID-19," Transport Policy, Elsevier, vol. 106(C), pages 185-195.
    15. Dingel, Jonathan I. & Neiman, Brent, 2020. "How many jobs can be done at home?," Journal of Public Economics, Elsevier, vol. 189(C).
    16. Berry, Audrey, 2019. "The distributional effects of a carbon tax and its impact on fuel poverty: A microsimulation study in the French context," Energy Policy, Elsevier, vol. 124(C), pages 81-94.
    17. Einat Tenenboim & Yoram Shiftan, 2018. "Accuracy and bias of subjective travel time estimates," Transportation, Springer, vol. 45(3), pages 945-969, May.
    18. Felix Creutzig & Joyashree Roy & William F. Lamb & Inês M. L. Azevedo & Wändi Bruine de Bruin & Holger Dalkmann & Oreane Y. Edelenbosch & Frank W. Geels & Arnulf Grubler & Cameron Hepburn & Edgar G. H, 2018. "Towards demand-side solutions for mitigating climate change," Nature Climate Change, Nature, vol. 8(4), pages 260-263, April.
    19. Beck, Marisa & Rivers, Nicholas & Yonezawa, Hidemichi, 2016. "A rural myth? Sources and implications of the perceived unfairness of carbon taxes in rural communities," Ecological Economics, Elsevier, vol. 124(C), pages 124-134.
    20. Bachelet, Marion & Kalkuhl, Matthias & Koch, Nicolas, 2021. "What If Working from Home Will Stick? Distributional and Climate Impacts for Germany," IZA Discussion Papers 14642, Institute of Labor Economics (IZA).
    21. Gössling, Stefan & Choi, Andy & Dekker, Kaely & Metzler, Daniel, 2019. "The Social Cost of Automobility, Cycling and Walking in the European Union," Ecological Economics, Elsevier, vol. 158(C), pages 65-74.
    22. Ian W. H. Parry & Margaret Walls & Winston Harrington, 2007. "Automobile Externalities and Policies," Journal of Economic Literature, American Economic Association, vol. 45(2), pages 373-399, June.
    23. Thomas Douenne, 2020. "The Vertical and Horizontal Distributive Effects of Energy Taxes: A Case Study of a French Policy," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 231-254.
    24. James Lennox, 2020. "More working from home will change the shape and size of cities," Centre of Policy Studies/IMPACT Centre Working Papers g-306, Victoria University, Centre of Policy Studies/IMPACT Centre.
    25. Marqués, R. & Hernández-Herrador, V. & Calvo-Salazar, M. & García-Cebrián, J.A., 2015. "How infrastructure can promote cycling in cities: Lessons from Seville," Research in Transportation Economics, Elsevier, vol. 53(C), pages 31-44.
    26. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & de Rubens, Gerardo Zarazua, 2019. "Energy Injustice and Nordic Electric Mobility: Inequality, Elitism, and Externalities in the Electrification of Vehicle-to-Grid (V2G) Transport," Ecological Economics, Elsevier, vol. 157(C), pages 205-217.
    27. Leroutier, Marion & Quirion, Philippe, 2022. "Air pollution and CO2 from daily mobility: Who emits and Why? Evidence from Paris," Energy Economics, Elsevier, vol. 109(C).
    28. Durrmeyer, Isis & Martinez, Nicolas, 2022. "The Welfare Consequences of Urban Traffic Regulations," TSE Working Papers 22-1378, Toulouse School of Economics (TSE).
    29. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: Air quality and the density of American cities," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    30. Kaspar R. Daellenbach & Gaëlle Uzu & Jianhui Jiang & Laure-Estelle Cassagnes & Zaira Leni & Athanasia Vlachou & Giulia Stefenelli & Francesco Canonaco & Samuël Weber & Arjo Segers & Jeroen J. P. Kuene, 2020. "Sources of particulate-matter air pollution and its oxidative potential in Europe," Nature, Nature, vol. 587(7834), pages 414-419, November.
    31. Felix Creutzig & Aneeque Javaid & Nicolas Koch & Brigitte Knopf & Giulio Mattioli & Ottmar Edenhofer, 2020. "Adjust urban and rural road pricing for fair mobility," Nature Climate Change, Nature, vol. 10(7), pages 591-594, July.
    32. Bel, Germà & Rosell, Jordi, 2017. "The impact of socioeconomic characteristics on CO2 emissions associated with urban mobility: Inequality across individuals," Energy Economics, Elsevier, vol. 64(C), pages 251-261.
    33. Philips, Ian & Anable, Jillian & Chatterton, Tim, 2022. "E-bikes and their capability to reduce car CO2 emissions," Transport Policy, Elsevier, vol. 116(C), pages 11-23.
    34. Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.
    35. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: air quality and the density of American cities," LSE Research Online Documents on Economics 117385, London School of Economics and Political Science, LSE Library.
    36. Korsu, Emre & Le Néchet, Florent, 2017. "Would fewer people drive to work in a city without excess commuting? Explorations in the Paris metropolitan area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 259-274.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marion Leroutier & Philippe Quirion, 2021. "Tackling Transport-Induced Pollution in Cities: A case Study in Paris," Working Papers 2021.07, FAERE - French Association of Environmental and Resource Economists.
    2. Leroutier, Marion & Quirion, Philippe, 2022. "Air pollution and CO2 from daily mobility: Who emits and Why? Evidence from Paris," Energy Economics, Elsevier, vol. 109(C).
    3. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    4. Sulikova, Simona & van den Bijgaart, Inge & Klenert, David & Mattauch, Linus, 2020. "Optimal fuel taxation with suboptimal health choices," Working Papers in Economics 794, University of Gothenburg, Department of Economics.
    5. Kettner, Claudia & Leoni, Thomas & Köberl, Judith & Kortschak, Dominik & Kirchner, Mathias & Sommer, Mark & Wallenko, Laura & Bachner, Gabriel & Mayer, Jakob & Spittler, Nathalie & Kulmer, Veronika, 2024. "Modelling the economy-wide effects of unilateral CO2 pricing under different revenue recycling schemes in Austria – Searching for a triple dividend," Energy Economics, Elsevier, vol. 137(C).
    6. Ravigné, Emilien & Ghersi, Frédéric & Nadaud, Franck, 2022. "Is a fair energy transition possible? Evidence from the French low-carbon strategy," Ecological Economics, Elsevier, vol. 196(C).
    7. Mireille Chiroleu-Assouline & Mouez Fodha, 2023. "Debt, tax and environmental policy [Dette, taxe et politique environnementale]," Post-Print halshs-04181981, HAL.
    8. Gustav Engström & Johan Gars & Niko Jaakkola & Therese Lindahl & Daniel Spiro & Arthur A. van Benthem, 2020. "What Policies Address Both the Coronavirus Crisis and the Climate Crisis?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 76(4), pages 789-810, August.
    9. Inge van den Bijgaart & David Klenert & Linus Mattauch & Simona Sulikova, 2024. "Healthy climate, healthy bodies: Optimal fuel taxation and physical activity," Economica, London School of Economics and Political Science, vol. 91(361), pages 93-122, January.
    10. Frondel, Manuel & Helmers, Viola & Mattauch, Linus & Pahle, Michael & Sommer, Stephan & Schmidt, Christoph M. & Edenhofer, Ottmar, 2021. "Akzeptanz der CO2-Bepreisung in Deutschland: Evidenz für private Haushalte vor Einführung des CO2-Preises," RWI Materialien 147, RWI - Leibniz-Institut für Wirtschaftsforschung.
    11. Mireille Chiroleu-Assouline, 2022. "Rendre acceptable la nécessaire taxation du carbone. Quelles pistes pour la France ?," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(1), pages 15-53.
    12. Mireille Chiroleu-Assouline & Mouez Fodha, 2023. "Dette, taxe et politique environnementale," Revue française d'économie, Presses de Sciences-Po, vol. 0(1), pages 55-106.
    13. Valenzuela-Levi, N. & Echiburu, T. & Correa, J. & Hurtubia, R. & Muñoz, J.C., 2021. "Housing and accessibility after the COVID-19 pandemic: Rebuilding for resilience, equity and sustainable mobility," Transport Policy, Elsevier, vol. 109(C), pages 48-60.
    14. Jinwon Kim & Jucheol Moon & Dongyun Yang, 2024. "Pigouvian Congestion Tolls and the Welfare Gain: Estimates for California Freeways," Working Papers 2402, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    15. Pottier, Antonin & Combet, Emmanuel & Cayla, Jean-Michel & de Lauretis, Simona & Nadaud, Franck, 2021. "Who emits CO2 ? Landscape of ecological inequalities in France from a critical perspective," FEEM Working Papers 311053, Fondazione Eni Enrico Mattei (FEEM).
    16. Giménez-Nadal, José Ignacio & Velilla, Jorge & Ortega, Raquel, 2022. "Revisiting excess commuting and self-employment: The case of Latin America," GLO Discussion Paper Series 1179, Global Labor Organization (GLO).
    17. Huang, Robert & Kahn, Matthew E., 2024. "An economic analysis of United States public transit carbon emissions dynamics," Regional Science and Urban Economics, Elsevier, vol. 107(C).
    18. Sovacool, Benjamin K. & Lipson, Matthew M. & Chard, Rose, 2019. "Temporality, vulnerability, and energy justice in household low carbon innovations," Energy Policy, Elsevier, vol. 128(C), pages 495-504.
    19. Bourgeois, Cyril & Giraudet, Louis-Gaëtan & Quirion, Philippe, 2021. "Lump-sum vs. energy-efficiency subsidy recycling of carbon tax revenue in the residential sector: A French assessment," Ecological Economics, Elsevier, vol. 184(C).
    20. Sommer, Stephan & Mattauch, Linus & Pahle, Michael, 2022. "Supporting carbon taxes: The role of fairness," Ecological Economics, Elsevier, vol. 195(C).

    More about this item

    Keywords

    Pollution; Cities; Sustainable transport; Modal shift; Scenario analysis;
    All these keywords.

    JEL classification:

    • R40 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - General
    • Q52 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Pollution Control Adoption and Costs; Distributional Effects; Employment Effects
    • Q53 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:213:y:2023:i:c:s0921800923002148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.