IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i9p4621-d544142.html
   My bibliography  Save this article

Detection of Dysbiosis and Increased Intestinal Permeability in Brazilian Patients with Relapsing–Remitting Multiple Sclerosis

Author

Listed:
  • Felipe Papa Pellizoni

    (Microbiome Study Group, School of Health Sciences Dr. Paulo Prata, Barretos 14785-002, Brazil
    These authors contributed equally to this work.)

  • Aline Zazeri Leite

    (Microbiology Program, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Sao Jose do Rio Preto 15054-000, Brazil
    These authors contributed equally to this work.)

  • Nathália de Campos Rodrigues

    (DNA Consult Genetics and Biotechnology, Sao Carlos 13560-340, Brazil)

  • Marcelo Jordão Ubaiz

    (Microbiome Study Group, School of Health Sciences Dr. Paulo Prata, Barretos 14785-002, Brazil)

  • Marina Ignácio Gonzaga

    (Microbiome Study Group, School of Health Sciences Dr. Paulo Prata, Barretos 14785-002, Brazil)

  • Nauyta Naomi Campos Takaoka

    (Microbiome Study Group, School of Health Sciences Dr. Paulo Prata, Barretos 14785-002, Brazil)

  • Vânia Sammartino Mariano

    (Barretos Cancer Hospital, Barretos 14784-400, Brazil)

  • Wellington Pine Omori

    (Department of Technology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, Brazil)

  • Daniel Guariz Pinheiro

    (Department of Technology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, Brazil)

  • Euclides Matheucci Junior

    (Biotechnology Department, Sao Carlos Federal University, Sao Carlos 13565-905, Brazil)

  • Eleni Gomes

    (Microbiology Program, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Sao Jose do Rio Preto 15054-000, Brazil)

  • Gislane Lelis Vilela de Oliveira

    (Microbiology Program, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University, Sao Jose do Rio Preto 15054-000, Brazil
    Food Engineering and Technology Department, São Paulo State University (UNESP), Sao Jose do Rio Preto 15054-000, Brazil)

Abstract

Dysbiosis, associated with barrier disruption and altered gut–brain communications, has been associated with multiple sclerosis (MS). In this study, we evaluated the gut microbiota in relapsing–remitting patients (RRMS) receiving disease-modifying therapies (DMTs) and correlated these data with diet, cytokines levels, and zonulin concentrations. Stool samples were used for 16S sequencing and real-time PCR. Serum was used for cytokine determination by flow cytometry, and zonulin quantification by ELISA. Pearson’s chi-square, Mann–Whitney, and Spearman’s correlation were used for statistical analyses. We detected differences in dietary habits, as well as in the gut microbiota in RRMS patients, with predominance of Akkermansia muciniphila and Bacteroides vulgatus and decreased Bifidobacterium . Interleukin-6 concentrations were decreased in treated patients, and we detected an increased intestinal permeability in RRMS patients when compared with controls. We conclude that diet plays an important role in the composition of the gut microbiota, and intestinal dysbiosis, detected in RRMS patients could be involved in increased intestinal permeability and affect the clinical response to DTMs. The future goal is to predict therapeutic responses based on individual microbiome analyses (personalized medicine) and propose dietary interventions and the use of probiotics or other microbiota modulators as adjuvant therapy to enhance the therapeutic efficacy of DMTs.

Suggested Citation

  • Felipe Papa Pellizoni & Aline Zazeri Leite & Nathália de Campos Rodrigues & Marcelo Jordão Ubaiz & Marina Ignácio Gonzaga & Nauyta Naomi Campos Takaoka & Vânia Sammartino Mariano & Wellington Pine Omo, 2021. "Detection of Dysbiosis and Increased Intestinal Permeability in Brazilian Patients with Relapsing–Remitting Multiple Sclerosis," IJERPH, MDPI, vol. 18(9), pages 1-17, April.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:9:p:4621-:d:544142
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/9/4621/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/9/4621/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicholas Arpaia & Clarissa Campbell & Xiying Fan & Stanislav Dikiy & Joris van der Veeken & Paul deRoos & Hui Liu & Justin R. Cross & Klaus Pfeffer & Paul J. Coffer & Alexander Y. Rudensky, 2013. "Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation," Nature, Nature, vol. 504(7480), pages 451-455, December.
    2. Eran Blacher & Stavros Bashiardes & Hagit Shapiro & Daphna Rothschild & Uria Mor & Mally Dori-Bachash & Christian Kleimeyer & Claudia Moresi & Yotam Harnik & Maya Zur & Michal Zabari & Rotem Ben-Zeev , 2019. "Potential roles of gut microbiome and metabolites in modulating ALS in mice," Nature, Nature, vol. 572(7770), pages 474-480, August.
    3. Kerstin Berer & Marsilius Mues & Michail Koutrolos & Zakeya Al Rasbi & Marina Boziki & Caroline Johner & Hartmut Wekerle & Gurumoorthy Krishnamoorthy, 2011. "Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination," Nature, Nature, vol. 479(7374), pages 538-541, November.
    4. Yukihiro Furusawa & Yuuki Obata & Shinji Fukuda & Takaho A. Endo & Gaku Nakato & Daisuke Takahashi & Yumiko Nakanishi & Chikako Uetake & Keiko Kato & Tamotsu Kato & Masumi Takahashi & Noriko N. Fukuda, 2013. "Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells," Nature, Nature, vol. 504(7480), pages 446-450, December.
    5. Pascal Lapébie & Vincent Lombard & Elodie Drula & Nicolas Terrapon & Bernard Henrissat, 2019. "Bacteroidetes use thousands of enzyme combinations to break down glycans," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    6. Veit Rothhammer & Davis M. Borucki & Emily C. Tjon & Maisa C. Takenaka & Chun-Cheih Chao & Alberto Ardura-Fabregat & Kalil Alves de Lima & Cristina Gutiérrez-Vázquez & Patrick Hewson & Ori Staszewski , 2018. "Microglial control of astrocytes in response to microbial metabolites," Nature, Nature, vol. 557(7707), pages 724-728, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alba Ordoñez-Rodriguez & Pablo Roman & Lola Rueda-Ruzafa & Ana Campos-Rios & Diana Cardona, 2023. "Changes in Gut Microbiota and Multiple Sclerosis: A Systematic Review," IJERPH, MDPI, vol. 20(5), pages 1-16, March.
    2. Diana Cardona & Pablo Roman, 2022. "New Perspectives in Health: Gut Microbiota," IJERPH, MDPI, vol. 19(10), pages 1-3, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natsuko Tabata & Mai Tsukada & Kozue Kubo & Yuri Inoue & Reiko Miroku & Fumihiko Odashima & Koichiro Shiratori & Takashi Sekiya & Shintaro Sengoku & Hideaki Shiroyama & Hiromichi Kimura, 2022. "Living Lab for Citizens’ Wellness: A Case of Maintaining and Improving a Healthy Diet under the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    2. Natalia Di Tommaso & Antonio Gasbarrini & Francesca Romana Ponziani, 2021. "Intestinal Barrier in Human Health and Disease," IJERPH, MDPI, vol. 18(23), pages 1-23, December.
    3. Monica Lopes-Ferreira & Adolfo Luis Almeida Maleski & Leticia Balan-Lima & Jefferson Thiago Gonçalves Bernardo & Lucas Marques Hipolito & Ana Carolina Seni-Silva & Joao Batista-Filho & Maria Alice Pim, 2022. "Impact of Pesticides on Human Health in the Last Six Years in Brazil," IJERPH, MDPI, vol. 19(6), pages 1-19, March.
    4. Hung-Chih Chen & Yen-Wen Liu & Kuan-Cheng Chang & Yen-Wen Wu & Yi-Ming Chen & Yu-Kai Chao & Min-Yi You & David J. Lundy & Chen-Ju Lin & Marvin L. Hsieh & Yu-Che Cheng & Ray P. Prajnamitra & Po-Ju Lin , 2023. "Gut butyrate-producers confer post-infarction cardiac protection," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    5. Junling Niu & Mengmeng Cui & Xin Yang & Juan Li & Yuhui Yao & Qiuhong Guo & Ailing Lu & Xiaopeng Qi & Dongming Zhou & Chenhong Zhang & Liping Zhao & Guangxun Meng, 2023. "Microbiota-derived acetate enhances host antiviral response via NLRP3," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Mathias Linnerbauer & Tobias Beyer & Lucy Nirschl & Daniel Farrenkopf & Lena Lößlein & Oliver Vandrey & Anne Peter & Thanos Tsaktanis & Hania Kebir & David Laplaud & Rupert Oellinger & Thomas Engleitn, 2023. "PD-L1 positive astrocytes attenuate inflammatory functions of PD-1 positive microglia in models of autoimmune neuroinflammation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    7. Kamila Gorczyca & Aleksandra Obuchowska & Żaneta Kimber-Trojnar & Magdalena Wierzchowska-Opoka & Bożena Leszczyńska-Gorzelak, 2022. "Changes in the Gut Microbiome and Pathologies in Pregnancy," IJERPH, MDPI, vol. 19(16), pages 1-15, August.
    8. Jiezhou Pan & Guidong Gong & Qin Wang & Jiaojiao Shang & Yunxiang He & Chelsea Catania & Dan Birnbaum & Yifei Li & Zhijun Jia & Yaoyao Zhang & Neel S. Joshi & Junling Guo, 2022. "A single-cell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Yanan Zhang & Shuyu Tu & Xingwei Ji & Jianan Wu & Jinxin Meng & Jinsong Gao & Xian Shao & Shuai Shi & Gan Wang & Jingjing Qiu & Zhuobiao Zhang & Chengang Hua & Ziyi Zhang & Shuxian Chen & Li Zhang & S, 2024. "Dubosiella newyorkensis modulates immune tolerance in colitis via the L-lysine-activated AhR-IDO1-Kyn pathway," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    10. Andrew C. Tolonen & Nicholas Beauchemin & Charlie Bayne & Lingyao Li & Jie Tan & Jackson Lee & Brian M. Meehan & Jeffrey Meisner & Yves Millet & Gabrielle LeBlanc & Robert Kottler & Erdmann Rapp & Chr, 2022. "Synthetic glycans control gut microbiome structure and mitigate colitis in mice," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Todd D. Terhune & Richard C. Deth, 2018. "Aluminum Adjuvant-Containing Vaccines in the Context of the Hygiene Hypothesis: A Risk Factor for Eosinophilia and Allergy in a Genetically Susceptible Subpopulation?," IJERPH, MDPI, vol. 15(5), pages 1-16, May.
    12. Ling Ye & Yuanlong Hou & Wanyu Hu & Hongmei Wang & Ruopeng Yang & Qihan Zhang & Qiaoli Feng & Xiao Zheng & Guangyu Yao & Haiping Hao, 2023. "Repressed Blautia-acetate immunological axis underlies breast cancer progression promoted by chronic stress," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Ruiqing Wang & Xinyu Yang & Jinting Liu & Fang Zhong & Chen Zhang & Yuhong Chen & Tao Sun & Chunyan Ji & Daoxin Ma, 2022. "Gut microbiota regulates acute myeloid leukaemia via alteration of intestinal barrier function mediated by butyrate," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    14. Lei Zhu & Xingxing Jian & Bingjing Zhou & Runqiu Liu & Melba Muñoz & Wan Sun & Lu Xie & Xiang Chen & Cong Peng & Marcus Maurer & Jie Li, 2024. "Gut microbiota facilitate chronic spontaneous urticaria," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    15. Koji Hosomi & Mayu Saito & Jonguk Park & Haruka Murakami & Naoko Shibata & Masahiro Ando & Takahiro Nagatake & Kana Konishi & Harumi Ohno & Kumpei Tanisawa & Attayeb Mohsen & Yi-An Chen & Hitoshi Kawa, 2022. "Oral administration of Blautia wexlerae ameliorates obesity and type 2 diabetes via metabolic remodeling of the gut microbiota," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    16. Stefano Suzzi & Tommaso Croese & Adi Ravid & Or Gold & Abbe R. Clark & Sedi Medina & Daniel Kitsberg & Miriam Adam & Katherine A. Vernon & Eva Kohnert & Inbar Shapira & Sergey Malitsky & Maxim Itkin &, 2023. "N-acetylneuraminic acid links immune exhaustion and accelerated memory deficit in diet-induced obese Alzheimer’s disease mouse model," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    17. Denisa Margină & Anca Ungurianu & Carmen Purdel & Dimitris Tsoukalas & Evangelia Sarandi & Maria Thanasoula & Fotios Tekos & Robin Mesnage & Demetrios Kouretas & Aristidis Tsatsakis, 2020. "Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors," IJERPH, MDPI, vol. 17(11), pages 1-27, June.
    18. Han, Yujie & Chang, Xiao & Xiang, Hai & Fang, Yi & Hao, Lizhuang & Gu, Yue & Han, Xinyu & Zhao, Bao & Zhao, Zijiao & Zhao, Chengzhen & Zhong, Rongzhen, 2023. "Exploring biomimetic potential of ruminant digestion strategies for lignocellulosic biomass utilization: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Alba Ordoñez-Rodriguez & Pablo Roman & Lola Rueda-Ruzafa & Ana Campos-Rios & Diana Cardona, 2023. "Changes in Gut Microbiota and Multiple Sclerosis: A Systematic Review," IJERPH, MDPI, vol. 20(5), pages 1-16, March.
    20. JangKeun Kim & Braden T. Tierney & Eliah G. Overbey & Ezequiel Dantas & Matias Fuentealba & Jiwoon Park & S. Anand Narayanan & Fei Wu & Deena Najjar & Christopher R. Chin & Cem Meydan & Conor Loy & Be, 2024. "Single-cell multi-ome and immune profiles of the Inspiration4 crew reveal conserved, cell-type, and sex-specific responses to spaceflight," Nature Communications, Nature, vol. 15(1), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:9:p:4621-:d:544142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.