IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-28856-x.html
   My bibliography  Save this article

Synthetic glycans control gut microbiome structure and mitigate colitis in mice

Author

Listed:
  • Andrew C. Tolonen

    (Kaleido Biosciences)

  • Nicholas Beauchemin

    (Kaleido Biosciences
    Seres Therapeutics)

  • Charlie Bayne

    (Kaleido Biosciences)

  • Lingyao Li

    (Kaleido Biosciences)

  • Jie Tan

    (Kaleido Biosciences)

  • Jackson Lee

    (Kaleido Biosciences)

  • Brian M. Meehan

    (Kaleido Biosciences
    Pareto Bio)

  • Jeffrey Meisner

    (Kaleido Biosciences)

  • Yves Millet

    (Kaleido Biosciences)

  • Gabrielle LeBlanc

    (Kaleido Biosciences)

  • Robert Kottler

    (glyXera GmbH)

  • Erdmann Rapp

    (glyXera GmbH
    Max Planck Institute for Dynamics of Complex Technical Systems)

  • Chris Murphy

    (Kaleido Biosciences
    Inc and Morningside BioPharma Advisory)

  • Peter J. Turnbaugh

    (University of California San Francisco)

  • Geoffrey Maltzahn

    (Kaleido Biosciences
    Flagship Pioneering)

  • Christopher M. Liu

    (Kaleido Biosciences
    Exo Therapeutics)

  • Johan E. T. Hylckama Vlieg

    (Kaleido Biosciences)

Abstract

Relative abundances of bacterial species in the gut microbiome have been linked to many diseases. Species of gut bacteria are ecologically differentiated by their abilities to metabolize different glycans, making glycan delivery a powerful way to alter the microbiome to promote health. Here, we study the properties and therapeutic potential of chemically diverse synthetic glycans (SGs). Fermentation of SGs by gut microbiome cultures results in compound-specific shifts in taxonomic and metabolite profiles not observed with reference glycans, including prebiotics. Model enteric pathogens grow poorly on most SGs, potentially increasing their safety for at-risk populations. SGs increase survival, reduce weight loss, and improve clinical scores in mouse models of colitis. Synthetic glycans are thus a promising modality to improve health through selective changes to the gut microbiome.

Suggested Citation

  • Andrew C. Tolonen & Nicholas Beauchemin & Charlie Bayne & Lingyao Li & Jie Tan & Jackson Lee & Brian M. Meehan & Jeffrey Meisner & Yves Millet & Gabrielle LeBlanc & Robert Kottler & Erdmann Rapp & Chr, 2022. "Synthetic glycans control gut microbiome structure and mitigate colitis in mice," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28856-x
    DOI: 10.1038/s41467-022-28856-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-28856-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-28856-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nicholas Arpaia & Clarissa Campbell & Xiying Fan & Stanislav Dikiy & Joris van der Veeken & Paul deRoos & Hui Liu & Justin R. Cross & Klaus Pfeffer & Paul J. Coffer & Alexander Y. Rudensky, 2013. "Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation," Nature, Nature, vol. 504(7480), pages 451-455, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul M. H. Tran & Fran Dong & Eileen Kim & Katherine P. Richardson & Lynn K. H. Tran & Kathleen Waugh & Diane Hopkins & Richard D. Cummings & Peng George Wang & Marian J. Rewers & Jin-Xiong She & Shar, 2022. "Use of a glycomics array to establish the anti-carbohydrate antibody repertoire in type 1 diabetes," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling Ye & Yuanlong Hou & Wanyu Hu & Hongmei Wang & Ruopeng Yang & Qihan Zhang & Qiaoli Feng & Xiao Zheng & Guangyu Yao & Haiping Hao, 2023. "Repressed Blautia-acetate immunological axis underlies breast cancer progression promoted by chronic stress," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Natsuko Tabata & Mai Tsukada & Kozue Kubo & Yuri Inoue & Reiko Miroku & Fumihiko Odashima & Koichiro Shiratori & Takashi Sekiya & Shintaro Sengoku & Hideaki Shiroyama & Hiromichi Kimura, 2022. "Living Lab for Citizens’ Wellness: A Case of Maintaining and Improving a Healthy Diet under the COVID-19 Pandemic," IJERPH, MDPI, vol. 19(3), pages 1-17, January.
    3. Denisa Margină & Anca Ungurianu & Carmen Purdel & Dimitris Tsoukalas & Evangelia Sarandi & Maria Thanasoula & Fotios Tekos & Robin Mesnage & Demetrios Kouretas & Aristidis Tsatsakis, 2020. "Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors," IJERPH, MDPI, vol. 17(11), pages 1-27, June.
    4. Mitsuko L. Yamamoto & Robert H. Schiestl, 2014. "Lymphoma Caused by Intestinal Microbiota," IJERPH, MDPI, vol. 11(9), pages 1-12, September.
    5. Felipe Papa Pellizoni & Aline Zazeri Leite & Nathália de Campos Rodrigues & Marcelo Jordão Ubaiz & Marina Ignácio Gonzaga & Nauyta Naomi Campos Takaoka & Vânia Sammartino Mariano & Wellington Pine Omo, 2021. "Detection of Dysbiosis and Increased Intestinal Permeability in Brazilian Patients with Relapsing–Remitting Multiple Sclerosis," IJERPH, MDPI, vol. 18(9), pages 1-17, April.
    6. Pasquale Comberiati & Maria Di Cicco & Francesco Paravati & Umberto Pelosi & Alessandro Di Gangi & Stefania Arasi & Simona Barni & Davide Caimmi & Carla Mastrorilli & Amelia Licari & Fernanda Chiera, 2021. "The Role of Gut and Lung Microbiota in Susceptibility to Tuberculosis," IJERPH, MDPI, vol. 18(22), pages 1-20, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-28856-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.