IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v138y2020ics0960077920305336.html
   My bibliography  Save this article

Association between weather data and COVID-19 pandemic predicting mortality rate: Machine learning approaches

Author

Listed:
  • Malki, Zohair
  • Atlam, El-Sayed
  • Hassanien, Aboul Ella
  • Dagnew, Guesh
  • Elhosseini, Mostafa A.
  • Gad, Ibrahim

Abstract

Nowadays, a significant number of infectious diseases such as human coronavirus disease (COVID-19) are threatening the world by spreading at an alarming rate. Some of the literatures pointed out that the pandemic is exhibiting seasonal patterns in its spread, incidence and nature of the distribution. In connection to the spread and distribution of the infection, scientific analysis that answers the questions whether the next summer can save people from COVID-19 is required. Many researchers have been exclusively asked whether high temperature during summer can slow down the spread of the COVID-19 as it has with other seasonal flues. Since there are a lot of questions that are unanswered right now, and many mysteries aspects about the COVID-19 that is still unknown to us, in-depth study and analysis of associated weather features are required. Moreover, understanding the nature of COVID-19 and forecasting the spread of COVID-19 request more investigation of the real effect of weather variables on the transmission of the COVID-19 among people. In this work, various regressor machine learning models are proposed to extract the relationship between different factors and the spreading rate of COVID-19. The machine learning algorithms employed in this work estimate the impact of weather variables such as temperature and humidity on the transmission of COVID-19 by extracting the relationship between the number of confirmed cases and the weather variables on certain regions. To validate the proposed method, we have collected the required datasets related to weather and census features and necessary prepossessing is carried out. From the experimental results, it is shown that the weather variables are more relevant in predicting the mortality rate when compared to the other census variables such as population, age, and urbanization. Thus, from this result, we can conclude that temperature and humidity are important features for predicting COVID-19 mortality rate. Moreover, it is indicated that the higher the value of temperature the lower number of infection cases.

Suggested Citation

  • Malki, Zohair & Atlam, El-Sayed & Hassanien, Aboul Ella & Dagnew, Guesh & Elhosseini, Mostafa A. & Gad, Ibrahim, 2020. "Association between weather data and COVID-19 pandemic predicting mortality rate: Machine learning approaches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920305336
    DOI: 10.1016/j.chaos.2020.110137
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920305336
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110137?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Melin, Patricia & Monica, Julio Cesar & Sanchez, Daniela & Castillo, Oscar, 2020. "Analysis of Spatial Spread Relationships of Coronavirus (COVID-19) Pandemic in the World using Self Organizing Maps," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    2. Priyanka & Dharmender Kumar, 2020. "Decision tree classifier: a detailed survey," International Journal of Information and Decision Sciences, Inderscience Enterprises Ltd, vol. 12(3), pages 246-269.
    3. Contreras, Sebastián & Villavicencio, H. Andrés & Medina-Ortiz, David & Biron-Lattes, Juan Pablo & Olivera-Nappa, Álvaro, 2020. "A multi-group SEIRA model for the spread of COVID-19 among heterogeneous populations," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    4. Mandal, Manotosh & Jana, Soovoojeet & Nandi, Swapan Kumar & Khatua, Anupam & Adak, Sayani & Kar, T.K., 2020. "A model based study on the dynamics of COVID-19: Prediction and control," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Abdo, Mohammed S. & Shah, Kamal & Wahash, Hanan A. & Panchal, Satish K., 2020. "On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rasheed, Jawad & Jamil, Akhtar & Hameed, Alaa Ali & Aftab, Usman & Aftab, Javaria & Shah, Syed Attique & Draheim, Dirk, 2020. "A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    3. Das, Ayan Kumar & Kalam, Sidra & Kumar, Chiranjeev & Sinha, Ditipriya, 2021. "TLCoV- An automated Covid-19 screening model using Transfer Learning from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    4. Frederik Seeup Hass & Jamal Jokar Arsanjani, 2021. "The Geography of the Covid-19 Pandemic: A Data-Driven Approach to Exploring Geographical Driving Forces," IJERPH, MDPI, vol. 18(6), pages 1-19, March.
    5. Rizvi, Syeda Amna & Umair, Muhammad & Cheema, Muhammad Aamir, 2021. "Clustering of countries for COVID-19 cases based on disease prevalence, health systems and environmental indicators," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Yu-Tse Tsan & Endah Kristiani & Po-Yu Liu & Wei-Min Chu & Chao-Tung Yang, 2022. "In the Seeking of Association between Air Pollutant and COVID-19 Confirmed Cases Using Deep Learning," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    7. Francis Tuluri & Reddy Remata & Wilbur L. Walters & Paul. B. Tchounwou, 2022. "Application of Machine Learning to Study the Association between Environmental Factors and COVID-19 Cases in Mississippi, USA," Mathematics, MDPI, vol. 10(6), pages 1-9, March.
    8. Wang, Mingzhao & Fu, Zuntao, 2022. "A new method of nonlinear causality detection: Reservoir computing Granger causality," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    9. Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
    10. Delin Meng & Jun Xu & Jijun Zhao, 2021. "Analysis and prediction of hand, foot and mouth disease incidence in China using Random Forest and XGBoost," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Castillo, Oscar & Melin, Patricia, 2021. "A new fuzzy fractal control approach of non-linear dynamic systems: The case of controlling the COVID-19 pandemics," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    2. Castillo, Oscar & Melin, Patricia, 2020. "Forecasting of COVID-19 time series for countries in the world based on a hybrid approach combining the fractal dimension and fuzzy logic," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Zahra Dehghan Shabani & Rouhollah Shahnazi, 2020. "Spatial distribution dynamics and prediction of COVID‐19 in Asian countries: spatial Markov chain approach," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1005-1025, December.
    4. Crokidakis, Nuno, 2020. "COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social isolation really work?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    5. Asamoah, Joshua Kiddy K. & Owusu, Mark A. & Jin, Zhen & Oduro, F. T. & Abidemi, Afeez & Gyasi, Esther Opoku, 2020. "Global stability and cost-effectiveness analysis of COVID-19 considering the impact of the environment: using data from Ghana," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    6. Salgotra, Rohit & Gandomi, Mostafa & Gandomi, Amir H., 2020. "Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    7. Bhardwaj, Rashmi & Bangia, Aashima, 2020. "Data driven estimation of novel COVID-19 transmission risks through hybrid soft-computing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Amiri, Pari & Afshari, Hojjat, 2022. "Common fixed point results for multi-valued mappings in complex-valued double controlled metric spaces and their applications to the existence of solution of fractional integral inclusion systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    9. Askar Akaev & Alexander I. Zvyagintsev & Askar Sarygulov & Tessaleno Devezas & Andrea Tick & Yuri Ichkitidze, 2022. "Growth Recovery and COVID-19 Pandemic Model: Comparative Analysis for Selected Emerging Economies," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
    10. Yichao Xie & Bowen Zhou & Zhenyu Wang & Bo Yang & Liaoyi Ning & Yanhui Zhang, 2023. "Industrial Carbon Footprint (ICF) Calculation Approach Based on Bayesian Cross-Validation Improved Cyclic Stacking," Sustainability, MDPI, vol. 15(19), pages 1-35, September.
    11. Ayman Batisha, 2023. "A lighthouse to future opportunities for sustainable water provided by intelligent water hackathons in the Arabsphere," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-13, December.
    12. Ahmad, Shabir & Ullah, Aman & Al-Mdallal, Qasem M. & Khan, Hasib & Shah, Kamal & Khan, Aziz, 2020. "Fractional order mathematical modeling of COVID-19 transmission," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Pelinovsky, Efim & Kurkin, Andrey & Kurkina, Oxana & Kokoulina, Maria & Epifanova, Anastasia, 2020. "Logistic equation and COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    14. Mayra R Tocto-Erazo & Jorge A Espíndola-Zepeda & José A Montoya-Laos & Manuel A Acuña-Zegarra & Daniel Olmos-Liceaga & Pablo A Reyes-Castro & Gudelia Figueroa-Preciado, 2020. "Lockdown, relaxation, and acme period in COVID-19: A study of disease dynamics in Hermosillo, Sonora, Mexico," PLOS ONE, Public Library of Science, vol. 15(12), pages 1-18, December.
    15. Mendoza, Daniel E. & Ochoa-Sánchez, Ana & Samaniego, Esteban P., 2022. "Forecasting of a complex phenomenon using stochastic data-based techniques under non-conventional schemes: The SARS-CoV-2 virus spread case," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    16. Yiannis Contoyiannis & Stavros G. Stavrinides & Michael P. Hanias & Myron Kampitakis & Pericles Papadopoulos & Rodrigo Picos & Stelios M. Potirakis, 2020. "A Universal Physics-Based Model Describing COVID-19 Dynamics in Europe," IJERPH, MDPI, vol. 17(18), pages 1-19, September.
    17. Abdo, Mohammed S. & Abdeljawad, Thabet & Ali, Saeed M. & Shah, Kamal & Jarad, Fahd, 2020. "Existence of positive solutions for weighted fractional order differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    18. Baba, Isa Abdullahi & Rihan, Fathalla A. & Hincal, Evren, 2023. "A fractional order model that studies terrorism and corruption codynamics as epidemic disease," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    19. Cho, Jung-Hoon & Kim, Dong-Kyu & Kim, Eui-Jin, 2022. "Multi-scale causality analysis between COVID-19 cases and mobility level using ensemble empirical mode decomposition and causal decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    20. Kumar Das, Dhiraj & Khatua, Anupam & Kar, T.K. & Jana, Soovoojeet, 2021. "The effectiveness of contact tracing in mitigating COVID-19 outbreak: A model-based analysis in the context of India," Applied Mathematics and Computation, Elsevier, vol. 404(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:138:y:2020:i:c:s0960077920305336. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.