IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i11p347-d1266905.html
   My bibliography  Save this article

An Overview of Current Challenges and Emerging Technologies to Facilitate Increased Energy Efficiency, Safety, and Sustainability of Railway Transport

Author

Listed:
  • Zdenko Kljaić

    (Ericsson Nikola Tesla d.d., Krapinska 45, 10000 Zagreb, Croatia)

  • Danijel Pavković

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia)

  • Mihael Cipek

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia)

  • Maja Trstenjak

    (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, 10000 Zagreb, Croatia)

  • Tomislav Josip Mlinarić

    (Faculty of Transportation Sciences, University of Zagreb, Vukelićeva 4, 10000 Zagreb, Croatia)

  • Mladen Nikšić

    (Faculty of Transportation Sciences, University of Zagreb, Vukelićeva 4, 10000 Zagreb, Croatia)

Abstract

This article presents a review of cutting-edge technologies poised to shape the future of railway transportation systems, focusing on enhancing their intelligence, safety, and environmental sustainability. It illustrates key aspects of the energy-transport-information/communication system nexus as a framework for future railway systems development. Initially, we provide a review of the existing challenges within the realm of railway transportation. Subsequently, we delve into the realm of emerging propulsion technologies, which are pivotal for ensuring the sustainability of transportation. These include innovative solutions such as alternative fuel-based systems, hydrogen fuel cells, and energy storage technologies geared towards harnessing kinetic energy and facilitating power transfer. In the following section, we turn our attention to emerging information and telecommunication systems, including Long-Term Evolution (LTE) and fifth generation New Radio (5G NR) networks tailored for railway applications. Additionally, we delve into the integral role played by the Industrial Internet of Things (Industrial IoT) in this evolving landscape. Concluding our analysis, we examine the integration of information and communication technologies and remote sensor networks within the context of Industry 4.0. This leveraging of information pertaining to transportation infrastructure promises to bolster energy efficiency, safety, and resilience in the transportation ecosystem. Furthermore, we examine the significance of the smart grid in the realm of railway transport, along with the indispensable resources required to bring forth the vision of energy-smart railways.

Suggested Citation

  • Zdenko Kljaić & Danijel Pavković & Mihael Cipek & Maja Trstenjak & Tomislav Josip Mlinarić & Mladen Nikšić, 2023. "An Overview of Current Challenges and Emerging Technologies to Facilitate Increased Energy Efficiency, Safety, and Sustainability of Railway Transport," Future Internet, MDPI, vol. 15(11), pages 1-44, October.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:11:p:347-:d:1266905
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/11/347/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/11/347/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cipek, Mihael & Pavković, Danijel & Krznar, Matija & Kljaić, Zdenko & Mlinarić, Tomislav Josip, 2021. "Comparative analysis of conventional diesel-electric and hypothetical battery-electric heavy haul locomotive operation in terms of fuel savings and emissions reduction potentials," Energy, Elsevier, vol. 232(C).
    2. Marko Kapetanović & Mohammad Vajihi & Rob M. P. Goverde, 2021. "Analysis of Hybrid and Plug-In Hybrid Alternative Propulsion Systems for Regional Diesel-Electric Multiple Unit Trains," Energies, MDPI, vol. 14(18), pages 1-29, September.
    3. David McCollum & Volker Krey & Peter Kolp & Yu Nagai & Keywan Riahi, 2014. "Transport electrification: A key element for energy system transformation and climate stabilization," Climatic Change, Springer, vol. 123(3), pages 651-664, April.
    4. Jiang, Xuemei & Guan, Dabo, 2016. "Determinants of global CO2 emissions growth," Applied Energy, Elsevier, vol. 184(C), pages 1132-1141.
    5. Kapetanović, Marko & Núñez, Alfredo & van Oort, Niels & Goverde, Rob M.P., 2021. "Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains," Applied Energy, Elsevier, vol. 294(C).
    6. Meinert, M. & Melzer, M. & Kamburow, C. & Palacin, R. & Leska, M. & Aschemann, H., 2015. "Benefits of hybridisation of diesel driven rail vehicles: Energy management strategies and life-cycle costs appraisal," Applied Energy, Elsevier, vol. 157(C), pages 897-904.
    7. Meinert, M. & Prenleloup, P. & Schmid, S. & Palacin, R., 2015. "Energy storage technologies and hybrid architectures for specific diesel-driven rail duty cycles: Design and system integration aspects," Applied Energy, Elsevier, vol. 157(C), pages 619-629.
    8. Kuby, Michael & Lim, Seow, 2005. "The flow-refueling location problem for alternative-fuel vehicles," Socio-Economic Planning Sciences, Elsevier, vol. 39(2), pages 125-145, June.
    9. Tang, Christopher S. & Veelenturf, Lucas P., 2019. "The strategic role of logistics in the industry 4.0 era," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 1-11.
    10. Li, Lei & Manier, Hervé & Manier, Marie-Ange, 2019. "Hydrogen supply chain network design: An optimization-oriented review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 342-360.
    11. Gao, Mingyuan & Cong, Jianli & Xiao, Jieling & He, Qing & Li, Shoutai & Wang, Yuan & Yao, Ye & Chen, Rong & Wang, Ping, 2020. "Dynamic modeling and experimental investigation of self-powered sensor nodes for freight rail transport," Applied Energy, Elsevier, vol. 257(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cipek, Mihael & Pavković, Danijel & Krznar, Matija & Kljaić, Zdenko & Mlinarić, Tomislav Josip, 2021. "Comparative analysis of conventional diesel-electric and hypothetical battery-electric heavy haul locomotive operation in terms of fuel savings and emissions reduction potentials," Energy, Elsevier, vol. 232(C).
    2. Kapetanović, Marko & Núñez, Alfredo & van Oort, Niels & Goverde, Rob M.P., 2021. "Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains," Applied Energy, Elsevier, vol. 294(C).
    3. Ovalle, Andres & Pouget, Julien & Bacha, Seddik & Gerbaud, Laurent & Vinot, Emmanuel & Sonier, Benoît, 2018. "Energy storage sizing methodology for mass-transit direct-current wayside support: Application to French railway company case study," Applied Energy, Elsevier, vol. 230(C), pages 1673-1684.
    4. Zhang, Chi & Zeng, Guohong & Wu, Jian & Wei, Shaoyuan & Zhang, Weige & Sun, Bingxiang, 2023. "Integrated optimization of driving strategy and energy management for hybrid diesel multiple units," Energy, Elsevier, vol. 281(C).
    5. Chen, Shuang & Hu, Minghui & Lei, Yanlei & Kong, Linghao, 2023. "Novel hybrid power system and energy management strategy for locomotives," Applied Energy, Elsevier, vol. 348(C).
    6. Cipek, Mihael & Pavković, Danijel & Kljaić, Zdenko & Mlinarić, Tomislav Josip, 2019. "Assessment of battery-hybrid diesel-electric locomotive fuel savings and emission reduction potentials based on a realistic mountainous rail route," Energy, Elsevier, vol. 173(C), pages 1154-1171.
    7. Sungmi Bae & Eunhan Lee & Jinil Han, 2020. "Multi-Period Planning of Hydrogen Supply Network for Refuelling Hydrogen Fuel Cell Vehicles in Urban Areas," Sustainability, MDPI, vol. 12(10), pages 1-23, May.
    8. Li, Lei & Al Chami, Zaher & Manier, Hervé & Manier, Marie-Ange & Xue, Jian, 2021. "Incorporating fuel delivery in network design for hydrogen fueling stations: Formulation and two metaheuristic approaches," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    9. Marko Kapetanović & Mohammad Vajihi & Rob M. P. Goverde, 2021. "Analysis of Hybrid and Plug-In Hybrid Alternative Propulsion Systems for Regional Diesel-Electric Multiple Unit Trains," Energies, MDPI, vol. 14(18), pages 1-29, September.
    10. Lee, Chungmok & Han, Jinil, 2017. "Benders-and-Price approach for electric vehicle charging station location problem under probabilistic travel range," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 130-152.
    11. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    12. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    13. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    14. Wei, Ran & Liu, Xiaoyue & Ou, Yi & Kiavash Fayyaz, S., 2018. "Optimizing the spatio-temporal deployment of battery electric bus system," Journal of Transport Geography, Elsevier, vol. 68(C), pages 160-168.
    15. Salehi-Amiri, Amirhossein & Zahedi, Ali & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa, 2021. "Designing a sustainable closed-loop supply chain network for walnut industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    16. Chung, Sung Hoon & Kwon, Changhyun, 2015. "Multi-period planning for electric car charging station locations: A case of Korean Expressways," European Journal of Operational Research, Elsevier, vol. 242(2), pages 677-687.
    17. Roel M. Post & Paul Buijs & Michiel A. J. uit het Broek & Jose A. Lopez Alvarez & Nick B. Szirbik & Iris F. A. Vis, 2018. "A solution approach for deriving alternative fuel station infrastructure requirements," Flexible Services and Manufacturing Journal, Springer, vol. 30(3), pages 592-607, September.
    18. Zhang, Tingsheng & Kong, Lingji & Zhu, Zhongyin & Wu, Xiaoping & Li, Hai & Zhang, Zutao & Yan, Jinyue, 2024. "An electromagnetic vibration energy harvesting system based on series coupling input mechanism for freight railroads," Applied Energy, Elsevier, vol. 353(PA).
    19. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    20. Govindan, Kannan & Kannan, Devika & Jørgensen, Thomas Ballegård & Nielsen, Tim Straarup, 2022. "Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:11:p:347-:d:1266905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.