IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v348y2023ics0306261923009212.html
   My bibliography  Save this article

Novel hybrid power system and energy management strategy for locomotives

Author

Listed:
  • Chen, Shuang
  • Hu, Minghui
  • Lei, Yanlei
  • Kong, Linghao

Abstract

The traditional fuel locomotive is the primary type of locomotive currently in operation on non-electrified railways; however, it presents certain disadvantages including a low efficiency and high fuel consumption. Therefore, in this study, a multimode hybrid locomotive configuration scheme is designed to improve the system efficiency and reduce fuel consumption during locomotive operation; further, the power flow state under different modes is analyzed, the mathematical model of the hybrid locomotive is established, and a system optimal efficiency calculation method is developed. Moreover, an energy management strategy based on the optimal system efficiency and with a hierarchical architecture is proposed. In the upper layer of this proposed energy management strategy, the optimal efficiency of all operating points and operational state of each component are determined offline using the optimal efficiency calculation method. The lower layer selects and coordinates the mode online by identifying the condition of the wheel and distributes the torque of each power source and the state of each transmission system component. The simulation results indicate that the fuel economy of the proposed energy management strategy is improved by 27.22% compared with that of the traditional fuel locomotive, and the fuel economy is only 7.21% lower than the global optimization result obtained via dynamic programming. In addition, no frequent clutch switching is observed under this strategy, and the electric motor does not operate under non-rated conditions for prolonged periods; these advantages ensure the rationality of control and the reliability of component operation. Finally, the results of a hardware-in-the-loop simulation test confirm that the proposed energy management strategy demonstrates good real-time performance.

Suggested Citation

  • Chen, Shuang & Hu, Minghui & Lei, Yanlei & Kong, Linghao, 2023. "Novel hybrid power system and energy management strategy for locomotives," Applied Energy, Elsevier, vol. 348(C).
  • Handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009212
    DOI: 10.1016/j.apenergy.2023.121557
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923009212
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cipek, Mihael & Pavković, Danijel & Krznar, Matija & Kljaić, Zdenko & Mlinarić, Tomislav Josip, 2021. "Comparative analysis of conventional diesel-electric and hypothetical battery-electric heavy haul locomotive operation in terms of fuel savings and emissions reduction potentials," Energy, Elsevier, vol. 232(C).
    2. Geng, Wenran & Lou, Diming & Wang, Chen & Zhang, Tong, 2020. "A cascaded energy management optimization method of multimode power-split hybrid electric vehicles," Energy, Elsevier, vol. 199(C).
    3. Zhuang, Weichao & Zhang, Xiaowu & Li, Daofei & Wang, Liangmo & Yin, Guodong, 2017. "Mode shift map design and integrated energy management control of a multi-mode hybrid electric vehicle," Applied Energy, Elsevier, vol. 204(C), pages 476-488.
    4. Lei, Zhenzhen & Qin, Datong & Hou, Liliang & Peng, Jingyu & Liu, Yonggang & Chen, Zheng, 2020. "An adaptive equivalent consumption minimization strategy for plug-in hybrid electric vehicles based on traffic information," Energy, Elsevier, vol. 190(C).
    5. Zhang, Yuanjian & Liu, Yonggang & Huang, Yanjun & Chen, Zheng & Li, Guang & Hao, Wanming & Cunningham, Geoff & Early, Juliana, 2021. "An optimal control strategy design for plug-in hybrid electric vehicles based on internet of vehicles," Energy, Elsevier, vol. 228(C).
    6. Anselma, Pier Giuseppe & Biswas, Atriya & Belingardi, Giovanni & Emadi, Ali, 2020. "Rapid assessment of the fuel economy capability of parallel and series-parallel hybrid electric vehicles," Applied Energy, Elsevier, vol. 275(C).
    7. Biswas, Dhrupad & Ghosh, Susenjit & Sengupta, Somnath & Mukhopadhyay, Siddhartha, 2022. "Energy Management of a Parallel Hybrid Electric Vehicle using Model Predictive Static Programming," Energy, Elsevier, vol. 250(C).
    8. Qin, Zhaobo & Luo, Yugong & Zhuang, Weichao & Pan, Ziheng & Li, Keqiang & Peng, Huei, 2018. "Simultaneous optimization of topology, control and size for multi-mode hybrid tracked vehicles," Applied Energy, Elsevier, vol. 212(C), pages 1627-1641.
    9. Cipek, Mihael & Pavković, Danijel & Kljaić, Zdenko & Mlinarić, Tomislav Josip, 2019. "Assessment of battery-hybrid diesel-electric locomotive fuel savings and emission reduction potentials based on a realistic mountainous rail route," Energy, Elsevier, vol. 173(C), pages 1154-1171.
    10. Kapetanović, Marko & Núñez, Alfredo & van Oort, Niels & Goverde, Rob M.P., 2021. "Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains," Applied Energy, Elsevier, vol. 294(C).
    11. Hamed Jafari Kaleybar & Morris Brenna & Huan Li & Dario Zaninelli, 2022. "Fuel Cell Hybrid Locomotive with Modified Fuzzy Logic Based Energy Management System," Sustainability, MDPI, vol. 14(14), pages 1-22, July.
    12. Biswas, Atriya & Anselma, Pier Giuseppe & Rathore, Aashit & Emadi, Ali, 2021. "Effect of coordinated control on real-time optimal mode selection for multi-mode hybrid electric powertrain," Applied Energy, Elsevier, vol. 289(C).
    13. Wu, Wei & Luo, Junlin & Zou, Tiangang & Liu, Yin & Yuan, Shihua & Xiao, Bingqing, 2022. "Systematic design and power management of a novel parallel hybrid electric powertrain for heavy-duty vehicles," Energy, Elsevier, vol. 253(C).
    14. Cheng, Shen & Zhao, Gaiju & Gao, Ming & Shi, Yuetao & Huang, Mingming & Yousefi, Nasser, 2021. "Optimal hybrid energy system for locomotive utilizing improved Locust Swarm optimizer," Energy, Elsevier, vol. 218(C).
    15. Peng, Hujun & Chen, Zhu & Li, Jianxiang & Deng, Kai & Dirkes, Steffen & Gottschalk, Jonas & Ünlübayir, Cem & Thul, Andreas & Löwenstein, Lars & Pischinger, Stefan & Hameyer, Kay, 2021. "Offline optimal energy management strategies considering high dynamics in batteries and constraints on fuel cell system power rate: From analytical derivation to validation on test bench," Applied Energy, Elsevier, vol. 282(PA).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Junjiang & Feng, Ganghui & Yan, Xianghai & He, Yundong & Liu, Mengnan & Xu, Liyou, 2024. "Cooperative control method considering efficiency and tracking performance for unmanned hybrid tractor based on rotary tillage prediction," Energy, Elsevier, vol. 288(C).
    2. Wu, Jingxuan & Li, Shuting & Fu, Aihui & Cvetković, Miloš & Palensky, Peter & Vasquez, Juan C. & Guerrero, Josep M., 2024. "Hierarchical online energy management for residential microgrids with Hybrid hydrogen–electricity Storage System," Applied Energy, Elsevier, vol. 363(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    2. Zhang, Chi & Zeng, Guohong & Wu, Jian & Wei, Shaoyuan & Zhang, Weige & Sun, Bingxiang, 2023. "Integrated optimization of driving strategy and energy management for hybrid diesel multiple units," Energy, Elsevier, vol. 281(C).
    3. Chen, Shuang & Hu, Minghui & Guo, Shanqi, 2023. "Fast dynamic-programming algorithm for solving global optimization problems of hybrid electric vehicles," Energy, Elsevier, vol. 273(C).
    4. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2021. "Real-Time Approximate Equivalent Consumption Minimization Strategy Based on the Single-Shaft Parallel Hybrid Powertrain," Energies, MDPI, vol. 14(23), pages 1-22, November.
    5. Miguel Angel Rodriguez-Cabal & Diego Alejandro Herrera-Jaramillo & Juan David Bastidas-Rodriguez & Juan Pablo Villegas-Ceballos & Kevin Smit Montes-Villa, 2022. "Methodology for the Estimation of Electrical Power Consumed by Locomotives on Undocumented Railroad Tracks," Energies, MDPI, vol. 15(12), pages 1-23, June.
    6. García, Antonio & Carlucci, Paolo & Monsalve-Serrano, Javier & Valletta, Andrea & Martínez-Boggio, Santiago, 2020. "Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion," Applied Energy, Elsevier, vol. 272(C).
    7. Zdenko Kljaić & Danijel Pavković & Mihael Cipek & Maja Trstenjak & Tomislav Josip Mlinarić & Mladen Nikšić, 2023. "An Overview of Current Challenges and Emerging Technologies to Facilitate Increased Energy Efficiency, Safety, and Sustainability of Railway Transport," Future Internet, MDPI, vol. 15(11), pages 1-44, October.
    8. Marko Kapetanović & Mohammad Vajihi & Rob M. P. Goverde, 2021. "Analysis of Hybrid and Plug-In Hybrid Alternative Propulsion Systems for Regional Diesel-Electric Multiple Unit Trains," Energies, MDPI, vol. 14(18), pages 1-29, September.
    9. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    10. Anselma, Pier Giuseppe, 2022. "Electrified powertrain sizing for vehicle fleets of car makers considering total ownership costs and CO2 emission legislation scenarios," Applied Energy, Elsevier, vol. 314(C).
    11. Wilberforce, Tabbi & Anser, Afaaq & Swamy, Jangam Aishwarya & Opoku, Richard, 2023. "An investigation into hybrid energy storage system control and power distribution for hybrid electric vehicles," Energy, Elsevier, vol. 279(C).
    12. Serrano, José Ramón & Piqueras, Pedro & De la Morena, Joaquín & Gómez-Vilanova, Alejandro & Guilain, Stéphane, 2021. "Methodological analysis of variable geometry turbine technology impact on the performance of highly downsized spark-ignition engines," Energy, Elsevier, vol. 215(PB).
    13. Wang, Weida & Chen, Yincong & Yang, Chao & Li, Ying & Xu, Bin & Xiang, Changle, 2022. "An enhanced hypotrochoid spiral optimization algorithm based intertwined optimal sizing and control strategy of a hybrid electric air-ground vehicle," Energy, Elsevier, vol. 257(C).
    14. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    15. Du, Guodong & Zou, Yuan & Zhang, Xudong & Kong, Zehui & Wu, Jinlong & He, Dingbo, 2019. "Intelligent energy management for hybrid electric tracked vehicles using online reinforcement learning," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Liu, Huanlong & Wang, Xu & Tian, Hao & Gan, Shicheng & Zhou, Jianyi & Wang, Jiawei, 2024. "Energy-saving starting method of electric motor based on the battery-accumulator hybrid drive," Energy, Elsevier, vol. 286(C).
    17. Emrani, Anisa & Berrada, Asmae & Bakhouya, Mohamed, 2022. "Optimal sizing and deployment of gravity energy storage system in hybrid PV-Wind power plant," Renewable Energy, Elsevier, vol. 183(C), pages 12-27.
    18. Kapetanović, Marko & Núñez, Alfredo & van Oort, Niels & Goverde, Rob M.P., 2021. "Reducing fuel consumption and related emissions through optimal sizing of energy storage systems for diesel-electric trains," Applied Energy, Elsevier, vol. 294(C).
    19. Lv, Chengkun & Huang, Qian & Chang, Juntao & Wang, Ziao & Zheng, Jialin & Yu, Daren, 2023. "Mode transition path optimization for turbine-based combined-cycle ramjet stage under uncertainty propagation of integrated airframe-propulsion system," Energy, Elsevier, vol. 268(C).
    20. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:348:y:2023:i:c:s0306261923009212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.